SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(361.4Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-68375-6

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Self-Learning Production Control using Algorithms of Artificial Intelligence

Self-Learning Production Control using Algorithms of Artificial Intelligence
[conference paper]

Luetkehoff, Ben
Blum, Matthias
Schroeter, Moritz

Abstract

Manufacturing companies are facing an increasingly turbulent market - a market defined by products growing in complexity and shrinking product life cycles. This leads to a boost in planning complexity accompanied by higher error sensitivity. In practice, IT systems and sensors integrated into the sh... view more

Manufacturing companies are facing an increasingly turbulent market - a market defined by products growing in complexity and shrinking product life cycles. This leads to a boost in planning complexity accompanied by higher error sensitivity. In practice, IT systems and sensors integrated into the shop floor in the context of Industry 4.0 are used to deal with these challenges. However, while existing research provides solutions in the field of pattern recognition or recommended actions, a combination of the two approaches is neglected. This leads to an overwhelming amount of data without contributing to an improvement of processes. To address this problem, this study presents a new platform-based concept to collect and analyze the high-resolution data with the use of self-learning algorithms. Herby, patterns can be identified and reproduced, allowing an exact prediction of the future system behavior. Artificial intelligence maximizes the automation of the reduction and compensation of disruptive factors.... view less

Classification
Manufacturing

Free Keywords
production control; self-learning algorithms; data analytics

Document language
English

Publication Year
2017

Page/Pages
p. 293-300

Journal
IFIP Advances in Information and Communication Technology (2017)

ISSN
1868-422X

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.