SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(977.7Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-67905-4

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Generating reliable tourist accommodation statistics: Bootstrapping regression model for overdispersed long-tailed data

[journal article]

Van Truong, Nguyen
Shimizu, Tetsuo
Kurihara, Takeshi
Choi, Sunkyung
Truong

Abstract

Purpose: Few studies have applied count data analysis to tourist accommodation data. This study was undertaken to investigate the characteristics and to seek for the most fitting models for population total estimation in relation to tourist accommodation data. Methods: Based on the data of 10,503 h... view more

Purpose: Few studies have applied count data analysis to tourist accommodation data. This study was undertaken to investigate the characteristics and to seek for the most fitting models for population total estimation in relation to tourist accommodation data. Methods: Based on the data of 10,503 hotels, obtained from by a nationwide Japanese survey, the bootstrap resampling method was applied for re-randomisation of the data. Training and test sets were derived by randomly splitting each of the bootstrap samples. Six count models were fitted to the training set and validated with the test set. Bootstrap distributions for parameters of significance were used for model evaluation. Results: The outcome variable (number of guests), was found to be heterogenous, over dispersed and long-tailed, with excessive zero counts. The hurdle negative binomial and zero-inflated negative binomial models outperformed the other models. The accuracy (se) of the estimation of total guests with training sets that ranged from 5% to 85%, was from 3.7 to 0.4 respectively. Results appear little overestimated. Implications: Findings indicated that the integration of the bootstrap resampling method and count regression provide a statistical tool for generating reliable tourist accommodation statistics. The use of bootstrap would help to detect and correct the bias of the estimation.... view less

Keywords
tourism; hotel and restaurant trade; statistics; Japan

Classification
Economic Sectors

Document language
English

Publication Year
2020

Page/Pages
p. 30-37

Journal
Journal of Tourism, Heritage & Services Marketing, 6 (2020) 2

DOI
https://doi.org/10.5281/zenodo.3837608

ISSN
2529-1947

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution-Noncommercial-No Derivative Works 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.