Show simple item record

[journal article]

dc.contributor.authorElff, Martinde
dc.contributor.authorHeisig, Jan Paulde
dc.contributor.authorSchaeffer, Merlinde
dc.contributor.authorShikano, Susumude
dc.date.accessioned2020-05-18T11:41:42Z
dc.date.available2020-05-18T11:41:42Z
dc.date.issued2020de
dc.identifier.issn1469-2112de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/67788
dc.description.abstractQuantitative comparative social scientists have long worried about the performance of multilevel models when the number of upper-level units is small. Adding to these concerns, an influential Monte Carlo study by Stegmueller (2013) suggests that standard maximum-likelihood (ML) methods yield biased point estimates and severely anti-conservative inference with few upper-level units. In this article, the authors seek to rectify this negative assessment. First, they show that ML estimators of coefficients are unbiased in linear multilevel models. The apparent bias in coefficient estimates found by Stegmueller can be attributed to Monte Carlo Error and a flaw in the design of his simulation study. Secondly, they demonstrate how inferential problems can be overcome by using restricted ML estimators for variance parameters and a t-distribution with appropriate degrees of freedom for statistical inference. Thus, accurate multilevel analysis is possible within the framework that most practitioners are familiar with, even if there are only a few upper-level units.de
dc.languageende
dc.subject.ddcSozialwissenschaften, Soziologiede
dc.subject.ddcSocial sciences, sociology, anthropologyen
dc.subject.othercross-national comparison; maximum likelihood; statistical inferencede
dc.titleMultilevel Analysis with Few Clusters: Improving Likelihood-based Methods to Provide Unbiased Estimates and Accurate Inferencede
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.source.journalBritish Journal of Political Science
dc.publisher.countryGBR
dc.subject.classozErhebungstechniken und Analysetechniken der Sozialwissenschaftende
dc.subject.classozMethods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methodsen
dc.subject.thesozvergleichende Politikwissenschaftde
dc.subject.thesozcomparative political scienceen
dc.subject.thesozMethodologiede
dc.subject.thesozmethodologyen
dc.subject.thesozMehrebenenanalysede
dc.subject.thesozmulti-level analysisen
dc.subject.thesozinternationaler Vergleichde
dc.subject.thesozinternational comparisonen
dc.rights.licenceCreative Commons - Namensnennung, Nicht-kommerz., Weitergabe unter gleichen Bedingungen 4.0de
dc.rights.licenceCreative Commons - Attribution-NonCommercial-ShareAlike 4.0en
ssoar.contributor.institutionWZBde
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10064776
internal.identifier.thesoz10043388
internal.identifier.thesoz10049678
internal.identifier.thesoz10047775
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
internal.identifier.classoz10105
internal.identifier.journal50
internal.identifier.document32
internal.identifier.ddc300
dc.identifier.doihttps://doi.org/10.1017/S0007123419000097de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence36
internal.identifier.pubstatus1
internal.identifier.review1
internal.dda.referencehttps://www.econstor.eu/oai/request@@oai:econstor.eu:10419/206685
dc.identifier.handlehttps://hdl.handle.net/10419/206685
ssoar.urn.registrationfalsede


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record