SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.18335/region.v7i1.282

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Teaching on Jupyter - Using notebooks to accelerate learning and curriculum development

[journal article]

Reades, Jonathan

Abstract

The proliferation of large, complex data spatial data sets presents challenges to the way that regional science - and geography more widely - is researched and taught. Increasingly, it is not ‘just’ quantitative skills that are needed, but computational ones. However, the majority of undergraduate p... view more

The proliferation of large, complex data spatial data sets presents challenges to the way that regional science - and geography more widely - is researched and taught. Increasingly, it is not ‘just’ quantitative skills that are needed, but computational ones. However, the majority of undergraduate programmes have yet to offer much more than a one-off ‘GIS programming’ class since such courses are seen as challenging not only for students to take, but for staff to deliver. Using evaluation criterion of minimal complexity, maximal flexibility, interactivity, utility, and maintainability, we show how the technical features of Jupyter notebooks - particularly when combined with the popularity of Anaconda Python and Docker - enabled us to develop and deliver a suite of three ‘geocomputation’ modules to Geography undergraduates, with some progressing to data science and analytics roles.... view less

Classification
Natural Science and Engineering, Applied Sciences

Document language
English

Publication Year
2020

Page/Pages
p. 21-34

Journal
Region: the journal of ERSA, 7 (2020) 1

ISSN
2409-5370

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution-NonCommercial 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.