SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(653.0 KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-66085-7

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

The Wisdom of the Audience: An Empirical Study of Social Semantics in Twitter Streams

[Sammelwerksbeitrag]

Wagner, Claudia
Singer, Philipp
Posch, Lisa
Strohmaier, Markus

Abstract

Interpreting the meaning of a document represents a fundamental challenge for current semantic analysis methods. One interesting aspect mostly neglected by existing methods is that authors of a document usually assume certain background knowledge of their intended audience. Based on this knowledge, ... mehr

Interpreting the meaning of a document represents a fundamental challenge for current semantic analysis methods. One interesting aspect mostly neglected by existing methods is that authors of a document usually assume certain background knowledge of their intended audience. Based on this knowledge, authors usually decide what to communicate and how to communicate it. Traditionally, this kind of knowledge has been elusive to semantic analysis methods. However, with the rise of social media such as Twitter, background knowledge of intended audiences (i.e., the community of potential readers) has become explicit to some extents, i.e., it can be modeled and estimated. In this paper, we (i) systematically compare different methods for estimating background knowledge of different audiences on Twitter and (ii) investigate to what extent the background knowledge of audiences is useful for interpreting the meaning of social media messages. We find that estimating the background knowledge of social media audiences may indeed be useful for interpreting the meaning of social media messages, but that its utility depends on manifested structural characteristics of message streams.... weniger

Thesaurusschlagwörter
Twitter; Fachwissen; Semantik; Internet; soziales Netzwerk; kollektives Wissen; computervermittelte Kommunikation; Bedeutung; Methodenvergleich; Netzgemeinschaft

Klassifikation
Naturwissenschaften, Technik(wissenschaften), angewandte Wissenschaften
interaktive, elektronische Medien

Freie Schlagwörter
Background Knowledge; Topic Model; Latent Dirichlet Allocation; Twitter Message; Audience User; Semantic Web

Titel Sammelwerk, Herausgeber- oder Konferenzband
The Semantic Web: Semantics and Big Data; 10th International Conference, ESWC 2013, Montpellier, France, May 26-30, 2013: Proceedings

Herausgeber
Cimiano, Philipp; Corcho, Oscar; Presutti, Valentina; Hollink, Laura; Rudolph, Sebastian

Konferenz
10. The Semantic Web: Semantics and Big Data (ESWC 2013). Montpellier, 2013

Sprache Dokument
Englisch

Publikationsjahr
2013

Verlag
Springer

Erscheinungsort
Berlin

Seitenangabe
S. 502-516

Schriftenreihe
Lecture Notes in Computer Science (LNCS), 7882

DOI
https://doi.org/10.1007/978-3-642-38288-8_34

ISSN
1611-3349

ISBN
978-3-642-38288-8

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Deposit Licence - Keine Weiterverbreitung, keine Bearbeitung


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.