SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.1177/0081175017747122

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Estimating the Relationship between Time-varying Covariates and Trajectories: The Sequence Analysis Multistate Model Procedure

[Zeitschriftenartikel]

Studer, Matthias
Fasang, Anette E.
Struffolino, Emanuela

Abstract

The relationship between processes and time-varying covariates is of central theoretical interest in addressing many social science research questions. On the one hand, event history analysis (EHA) has been the chosen method to study these kinds of relationships when the outcomes can be meaningfully... mehr

The relationship between processes and time-varying covariates is of central theoretical interest in addressing many social science research questions. On the one hand, event history analysis (EHA) has been the chosen method to study these kinds of relationships when the outcomes can be meaningfully specified as simple instantaneous events or transitions. On the other hand, sequence analysis (SA) has made increasing inroads into the social sciences to analyze trajectories as holistic “process outcomes.” We propose an original combination of these two approaches called the sequence analysis multistate model (SAMM) procedure. The SAMM procedure allows the study of the relationship between time-varying covariates and trajectories of categorical states specified as process outcomes that unfold over time. The SAMM is a stepwise procedure: (1) SA-related methods are used to identify ideal-typical patterns of changes within trajectories obtained by considering the sequence of states over a predefined time span; (2) multistate event history models are estimated to study the probability of transitioning from a specific state to such ideal-typical patterns. The added value of the SAMM procedure is illustrated through an example from life-course sociology on how (1) time-varying family status is associated with women’s employment trajectories in East and West Germany and (2) how German reunification affected these trajectories in the two subsocieties.... weniger

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
German reunification; employment trajectories; event history analysis (EHA); life-course sociology; multistate model; sequence analysis

Sprache Dokument
Englisch

Publikationsjahr
2018

Seitenangabe
S. 103-135

Zeitschriftentitel
Sociological Methodology, 48 (2018) 1

Handle
https://hdl.handle.net/10419/191543

ISSN
1467-9531

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Deposit Licence - Keine Weiterverbreitung, keine Bearbeitung

Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.