SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.1177/0081175017747122

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Estimating the Relationship between Time-varying Covariates and Trajectories: The Sequence Analysis Multistate Model Procedure

[journal article]

Studer, Matthias
Fasang, Anette E.
Struffolino, Emanuela

Abstract

The relationship between processes and time-varying covariates is of central theoretical interest in addressing many social science research questions. On the one hand, event history analysis (EHA) has been the chosen method to study these kinds of relationships when the outcomes can be meaningfully... view more

The relationship between processes and time-varying covariates is of central theoretical interest in addressing many social science research questions. On the one hand, event history analysis (EHA) has been the chosen method to study these kinds of relationships when the outcomes can be meaningfully specified as simple instantaneous events or transitions. On the other hand, sequence analysis (SA) has made increasing inroads into the social sciences to analyze trajectories as holistic “process outcomes.” We propose an original combination of these two approaches called the sequence analysis multistate model (SAMM) procedure. The SAMM procedure allows the study of the relationship between time-varying covariates and trajectories of categorical states specified as process outcomes that unfold over time. The SAMM is a stepwise procedure: (1) SA-related methods are used to identify ideal-typical patterns of changes within trajectories obtained by considering the sequence of states over a predefined time span; (2) multistate event history models are estimated to study the probability of transitioning from a specific state to such ideal-typical patterns. The added value of the SAMM procedure is illustrated through an example from life-course sociology on how (1) time-varying family status is associated with women’s employment trajectories in East and West Germany and (2) how German reunification affected these trajectories in the two subsocieties.... view less

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
German reunification; employment trajectories; event history analysis (EHA); life-course sociology; multistate model; sequence analysis

Document language
English

Publication Year
2018

Page/Pages
p. 103-135

Journal
Sociological Methodology, 48 (2018) 1

Handle
https://hdl.handle.net/10419/191543

ISSN
1467-9531

Status
Published Version; peer reviewed

Licence
Deposit Licence - No Redistribution, No Modifications

With the permission of the rights owner, this publication is under open access due to a (DFG-/German Research Foundation-funded) national or Alliance license.


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.