SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.1093/esr/jcy053

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Why You Should Always Include a Random Slope for the Lower-Level Variable Involved in a Cross-Level Interaction

[journal article]

Heisig, Jan Paul
Schaeffer, Merlin

Abstract

Mixed-effects multilevel models are often used to investigate cross-level interactions, a specific type of context effect that may be understood as an upper-level variable moderating the association between a lower-level predictor and the outcome. We argue that multilevel models involving cross-leve... view more

Mixed-effects multilevel models are often used to investigate cross-level interactions, a specific type of context effect that may be understood as an upper-level variable moderating the association between a lower-level predictor and the outcome. We argue that multilevel models involving cross-level interactions should always include random slopes on the lower-level components of those interactions. Failure to do so will usually result in severely anti-conservative statistical inference. We illustrate the problem with extensive Monte Carlo simulations and examine its practical relevance by studying 30 prototypical cross-level interactions with European Social Survey data for 28 countries. In these empirical applications, introducing a random slope term reduces the absolute t-ratio of the cross-level interaction term by 31 per cent or more in three quarters of cases, with an average reduction of 42 per cent. Many practitioners seem to be unaware of these issues. Roughly half of the cross-level interaction estimates published in the European Sociological Review between 2011 and 2016 are based on models that omit the crucial random slope term. Detailed analysis of the associated test statistics suggests that many of the estimates would not reach conventional thresholds for statistical significance in correctly specified models that include the random slope. This raises the question how much robust evidence of cross-level interactions sociology has actually produced over the past decades.... view less

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
comparative research; context effects; hierarchical data; multi-level and hierarchichal models

Document language
English

Publication Year
2019

Page/Pages
258–279 p.

Journal
European Sociological Review, 35 (2019) 2

Handle
https://hdl.handle.net/10419/195523

ISSN
1468-2672

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.