SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(2.048 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-63180-3

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

(Intelligentes) Text Mining in der Marktforschung

[Sammelwerk]

Stützer, Cathleen
Wachenfeld-Schell, Alexandra
Oglesby, Stefan
(Hrsg.)

Körperschaftlicher Herausgeber
Deutsche Gesellschaft für Online-Forschung e.V. (DGOF)

Abstract

Die Extraktion von Informationen aus Texten - insbesondere aus unstrukturierten Textdaten wie Foren, Bewertungsportalen bzw. aus offenen Angaben - stellen heute eine besondere Herausforderung für Marktforscher und Marktforscherinnen dar. Hierzu wird zum einen neues methodisches Know-how gebraucht, u... mehr

Die Extraktion von Informationen aus Texten - insbesondere aus unstrukturierten Textdaten wie Foren, Bewertungsportalen bzw. aus offenen Angaben - stellen heute eine besondere Herausforderung für Marktforscher und Marktforscherinnen dar. Hierzu wird zum einen neues methodisches Know-how gebraucht, um mit den komplexen Datenbeständen sowohl bei der Erhebung wie auch bei der Bewertung dieser umzugehen. Zum anderen müssen im Kontext der digitalen Beforschung von neuen Customer Insights sowohl technische als auch organisationale Infrastrukturen geschaffen werden, um u.a. Geschäftsmodelle in Abläufen und Arbeitsprozessen von Unternehmen, Institutionen und Organisationen etablieren zu können. Die Beiträge des Bandes besprechen nicht nur vielfältigste Methoden und Verfahren zur automatischen Textextraktion, sondern zeigen hierbei sowohl die Relevanz als auch die Herausforderungen für die Online-Marktforschung auf, die mit dem Einsatz solch innovativer Ansätze und Verfahren verbunden sind. Band 1 beinhaltet folgende Beiträge: C. M. Stützer, A. Wachenfeld-Schell & S. Oglesby: Digitale Transformation der Marktforschung; A. Lang & M. Egger, Insius UG: Wie Marktforscher durch kooperatives Natural Language Processing bei der qualitativen Inhaltsanalyse profitieren können; M. Heurich & S. Štajner, Symanto Research: Durch Technologie zu mehr Empathie in der Kundenansprache - Wie Text Analytics helfen kann, die Stimme des digitalen Verbrauchers zu verstehen; G. Heisenberg, TH Köln & T. Hees, Questback GmbH: Text Mining-Verfahren zur Analyse offener Antworten in Online-Befragungen im Bereich der Markt- und Medienforschung; T. Reuter, Cogia Intelligence GmbH: Automatische semantische Analysen für die Online-Marktforschung; P. de Buren, Caplena GmbH: Offenen Nennungen gekonnt analysieren... weniger

Thesaurusschlagwörter
Inhaltsanalyse; künstliche Intelligenz; Digitalisierung; Algorithmus; Mensch-Maschine-System; Soziale Medien; Textanalyse; Automatisierung; Internet; Marktforschung

Klassifikation
Naturwissenschaften, Technik(wissenschaften), angewandte Wissenschaften

Freie Schlagwörter
Text Mining; Customer Insights; Textdaten; Textextraktion; Online-Marktforschung

Sprache Dokument
Deutsch

Publikationsjahr
2019

Erscheinungsort
Köln

Seitenangabe
25 S.

Schriftenreihe
Kompendium der Online-Forschung, 1

ISBN
978-3-9815106-8-3

Status
Erstveröffentlichung; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung, Nicht-kommerz., Weitergabe unter gleichen Bedingungen 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.