SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.12758/mda.2018.02

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

The Advantage and Disadvantage of Implicitly Stratified Sampling

[journal article]

Lynn, Peter

Abstract

Explicitly stratified sampling (ESS) and implicitly stratified sampling (ISS) are well-established alternative methods for controlling the distribution of a survey sample in terms of variables that define the strata. If these variables are correlated with survey estimates, the estimates will benefit... view more

Explicitly stratified sampling (ESS) and implicitly stratified sampling (ISS) are well-established alternative methods for controlling the distribution of a survey sample in terms of variables that define the strata. If these variables are correlated with survey estimates, the estimates will benefit from improved precision. With ESS, unbiased estimation of the standard errors of survey estimates is possible, provided that sampling strata membership is identified on the survey dataset. With ISS this is not possible and usual practice is to invoke an approximation that tends to result in systematic over-estimation of standard errors. This can be perceived as a disadvantage of ISS. However, this article demonstrates, both theoretically and through a simulation study, that true standard errors can be smaller with ISS and argues that this advantage may be more important than the ability to obtain unbiased estimates of the standard errors. The simulation findings also suggest that the extent of over-estimation with the usual approximate variance estimator may be modest.... view less

Keywords
data capture; sample; survey research

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
standard error; stratified sampling; survey sampling

Document language
English

Publication Year
2019

Page/Pages
p. 253-266

Journal
Methods, data, analyses : a journal for quantitative methods and survey methodology (mda), 13 (2019) 2

ISSN
2190-4936

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.