SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.13094/SMIF-2019-00004

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Inferences based on Probability Sampling or Nonprobability Sampling: Are They Nothing but a Question of Models?

[journal article]

Quatember, Andreas

Abstract

The inferential quality of an available data set, be it from a probability sample or a nonprobability sample, is discussed under the standard of the representativeness of a sample with regard to interesting characteristics, which implicitly includes the consideration of the total survey error. Th... view more

The inferential quality of an available data set, be it from a probability sample or a nonprobability sample, is discussed under the standard of the representativeness of a sample with regard to interesting characteristics, which implicitly includes the consideration of the total survey error. The paper focuses on the assumptions that are made when calculating an estimator of a certain population characteristic using a specific sampling method, and on the model-based repair methods, which can be applied in the case of deviations from these assumptions. The different implicit assumptions regarding operationalization, frame, selection method, nonresponse, measurement, and data processing are considered exemplarily for the Horvitz-Thompson estimator of a population total. In particular, the remarkable effect of a deviation from the assumption concerning the selection method is discussed. It is shown that there are far more unverifiable, disputable models addressing the different implicit assumptions needed in the nonprobability approach to sampling, including big data. Moreover, the definition of the informative samples with respect to the expressed survey purpose is presented, which complements the definition of the representativeness of samples in the practice of survey sampling. Finally, an answer to the question in the title of this study is given and detailed reports regarding the applied survey design are recommended.... view less

Keywords
inferential statistics; probability; sample; sampling theory; survey research; representativity; methodology; data collection method; survey; response behavior; measurement; data capture

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
Representativeness; Sample surveys; Sampling techniques; Survey methodology; total survey error

Document language
English

Publication Year
2019

Page/Pages
p. 1-9

Journal
Survey Methods: Insights from the Field (2019)

Issue topic
Probability and Nonprobability Sampling: Sampling of hard-to-reach survey populations

ISSN
2296-4754

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.