SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.18335/region.v4i1.107

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Revisiting the Boston data set: changing the units of observation affects estimated willingness to pay for clean air

[journal article]

Bivand, Roger

Abstract

Harrison, Rubinfeld (1978c) used a hedonic model to find out how house values were affected by air pollution in Boston, when other variables were taken into consideration. Their primary interest was in estimating willingness to pay for cleaner air. They chose to use 506 census tracts as units of obs... view more

Harrison, Rubinfeld (1978c) used a hedonic model to find out how house values were affected by air pollution in Boston, when other variables were taken into consideration. Their primary interest was in estimating willingness to pay for cleaner air. They chose to use 506 census tracts as units of observation because median house values for these units of aggregation were published in the 1970 census tabulations. Air pollution values from the model output, represented by nitrogen oxides (NOX), were available for 122 model output zones, of which only 96 fell within the study area defined by the chosen census tracts. These NOX values were then assigned proportionally to all census tracts falling within each model output zone. By re-aggregating the house value data to the 96 air pollution model output zones and re-fitting the regression model, the total impact of air pollution on house values, and thus the estimated willingness to pay, increases markedly. By extending the analysis to include spatially lagged independent variables, the total impact of air pollution on median house values, and consequently on the willingness to pay analysis, increases by over three times. Use of weighting to adjust the units of observation for the relative numbers of housing units behind each median house value further buttresses this conclusion. It is shown conclusively that the choice of observational units matters crucially for the estimation of economic parameters of interest in this data set.... view less

Keywords
air pollution control; environmental pollution; willingness to pay; observation; regression analysis; United States of America; town

Classification
Area Development Planning, Regional Research
Ecology, Environment
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Document language
English

Publication Year
2017

Page/Pages
p. 109-127

Journal
Region: the journal of ERSA, 4 (2017) 1

ISSN
2409-5370

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution-NonCommercial 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.