SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(752.9 KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-60870-8

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Comparing Multiple Imputation and Propensity-Score Weighting in Unit-Nonresponse Adjustments: A Simulation Study

[Zeitschriftenartikel]

Alanya, Ahu
Wolf, Christof
Sotto, Cristina

Abstract

The usual approach to unit-nonresponse bias detection and adjustment in social surveys has been post-stratification weights, or more recently, propensity-score weighting (PSW) based on auxiliary information. There exists a third approach, which is far less popular: using multiple imputed values for ... mehr

The usual approach to unit-nonresponse bias detection and adjustment in social surveys has been post-stratification weights, or more recently, propensity-score weighting (PSW) based on auxiliary information. There exists a third approach, which is far less popular: using multiple imputed values for each missing unit of the survey outcome(s). We suggest multiple imputation (MI) as an alternative to PSW since the latter is known to increase variance substantially without reducing bias when auxiliary variables are not associated with the survey outcome of interest. Given that most social surveys have multiple target variables, creating imputed data sets may address bias in survey outcomes with less variance inflation. We examine the performance of PSW and MI on mean estimates under various conditions using fully simulated data. To evaluate the performance of the methods, we report average bias, root mean squared error, and percent coverage of 95 percent confidence intervals. MI performs better under some of our scenarios, but PSW performs better under others. Even within certain scenarios, PSW performs better on coverage or root mean squared error while MI performs better on the other criteria. Therefore, robust methods that simultaneously model both the outcomes and the (non)response may be a promising alternative in the future.... weniger

Thesaurusschlagwörter
Antwortverhalten; Methodenvergleich; Schätzung; Simulation; multivariate Analyse; Stichprobe; Gewichtung; Umfrageforschung

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Sprache Dokument
Englisch

Publikationsjahr
2015

Seitenangabe
S. 635-661

Zeitschriftentitel
Public Opinion Quarterly, 79 (2015) 3

DOI
https://doi.org/10.1093/poq/nfv029

ISSN
1537-5331

Status
Postprint; begutachtet (peer reviewed)

Lizenz
Deposit Licence - Keine Weiterverbreitung, keine Bearbeitung


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.