SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(336.9Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-57539-3

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Big Data und Data-Science-Ansätze in der öffentlichen Verwaltung

[collection article]


This document is a part of the following document:
(Un)berechenbar? Algorithmen und Automatisierung in Staat und Gesellschaft

Mergel, Ines

Corporate Editor
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS, Kompetenzzentrum Öffentliche IT (ÖFIT)

Abstract

Big Data und Data-Science-Ansätze finden Einzug in die öffentliche Verwaltung. Dieses Kapitel bietet zunächst eine Definition von Big Data in der öffentlichen Verwaltung an und leitet die unterschiedlichen Datenquellen für historische, Echtzeit- und prädiktive Big-Data-Analysen ab. Danach werden Bei... view more

Big Data und Data-Science-Ansätze finden Einzug in die öffentliche Verwaltung. Dieses Kapitel bietet zunächst eine Definition von Big Data in der öffentlichen Verwaltung an und leitet die unterschiedlichen Datenquellen für historische, Echtzeit- und prädiktive Big-Data-Analysen ab. Danach werden Beispiele für organisationale Einheiten in der öffentlichen Verwaltung erläutert, die Big-Data-Analysen durchführen. Anhand der folgenden drei ausgewählten Beispiele wird das Potenzial von Big Data aufgezeigt: USGS »Did you feel it?«-Twitter-Karten, prädiktive Analysen in Finanzbehörden und Vorhersagen von Grippewellen mit Hilfe von Google Flu Trends. Aus diesen und weiteren Beispielen werden dann die Herausforderungen für die Verwendung von Big Data und Data-Science-Ansätzen in der öffentlichen Verwaltung erläutert sowie offene Forschungsfragen für die Verwaltungswissenschaft abgeleitet.... view less

Keywords
public administration; automation; digitalization; data processing; data; analysis; trend; prognosis

Classification
Technology Assessment
Administrative Science

Free Keywords
Big Data; Data Science

Collection Title
(Un)berechenbar? Algorithmen und Automatisierung in Staat und Gesellschaft

Editor
Mohabbat Kar, Resa; Thapa, Basanta E. P.; Parycek, Peter

Document language
German

Publication Year
2018

City
Berlin

Page/Pages
p. 76-96

ISBN
978-3-9818892-5-3

Status
Published Version; reviewed

Licence
Creative Commons - Attribution 3.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.