SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(344.6Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-50108-5

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Effect Comparison in Multilevel Structural Equation Models with Non-Metric Outcomes

[collection article]

Kern, Christoph
Stein, Petra

Corporate Editor
American Statistical Association

Abstract

This study discusses difficulties of effect comparisons in multilevel structural equation models with non-metric outcomes, such as nonlinear dyadic mixed-effects regression. In these models, the fixation of the level-1 error variances induces substantial drawbacks in the context of effect comparison... view more

This study discusses difficulties of effect comparisons in multilevel structural equation models with non-metric outcomes, such as nonlinear dyadic mixed-effects regression. In these models, the fixation of the level-1 error variances induces substantial drawbacks in the context of effect comparisons which align with the well-known problems of standard single- and multilevel nonlinear models. Specifically, the level-1 and level-2 coefficients as well as the level-2 variance components are implicitly rescaled by the amount of unobserved level-1 residual variation and thus may apparently differ across (and within) equations despite of true effect equality. Against this background, the present study discusses a multilevel extension of the method proposed by Sobel and Arminger (1992) with which potential differences in level-1 residual variation can be taken into account through the specification of non-linear parameter constraints. The problems of effect comparisons in multilevel probit SEM's and the proposed correction method are exemplified with a simulation study.... view less

Keywords
statistical analysis; simulation; statistical method; empirical social research; multi-level analysis; model comparison; multivariate analysis

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
multilevel probit SEM; effect comparison; non-linear constraints; structural equation model

Collection Title
JSM 2016 Proceedings, Social Statistics Section

Document language
English

Publication Year
2016

City
Alexandria, VA

Page/Pages
p. 3892-3901

Status
Published Version; reviewed

Licence
Deposit Licence - No Redistribution, No Modifications


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.