Show simple item record

[journal article]

dc.contributor.authorSchonlau, Matthias
dc.contributor.authorCouper, Mick P.
dc.date.accessioned2017-01-04T11:08:25Z
dc.date.available2017-01-04T11:08:25Z
dc.date.issued2016
dc.identifier.issn1864-3361
dc.identifier.urihttp://www.ssoar.info/ssoar/handle/document/49780
dc.description.abstract"Text data from open-ended questions in surveys are difficult to analyze and are frequently ignored. Yet open-ended questions are important because they do not constrain respondents' answer choices. Where open-ended questions are necessary, sometimes multiple human coders hand-code answers into one of several categories. At the same time, computer scientists have made impressive advances in text mining that may allow automation of such coding. Automated algorithms do not achieve an overall accuracy high enough to entirely replace humans. We categorize open-ended questions soliciting narrative responses using text mining for easy-to-categorize answers and humans for the remainder using expected accuracies to guide the choice of the threshold delineating between 'easy' and 'hard'. Employing multinomial boosting avoids the common practice of converting machine learning 'confidence scores' into pseudo-probabilities. This approach is illustrated with examples from open-ended questions related to respondents’ advice to a patient in a hypothetical dilemma, a follow-up probe related to respondents' perception of disclosure/privacy risk, and from a question on reasons for quitting smoking from a follow-up survey from the Ontario Smoker's Helpline. Targeting 80% combined accuracy, we found that 54%-80% of the data could be categorized automatically in research surveys." (author's abstract)en
dc.languageen
dc.subject.ddcSozialwissenschaften, Soziologiede
dc.subject.ddcSocial sciences, sociology, anthropologyen
dc.subject.othermultinomial boosting; open-ended questions; text mining; uncertainty sampling; gradient boosting
dc.titleSemi-automated categorization of open-ended questions
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.source.journalSurvey Research Methods
dc.source.volume10
dc.publisher.countryDEU
dc.source.issue2
dc.subject.classozErhebungstechniken und Analysetechniken der Sozialwissenschaftende
dc.subject.classozMethods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methodsen
dc.subject.thesozDatengewinnungde
dc.subject.thesozdata captureen
dc.subject.thesozqualitative Methodede
dc.subject.thesozqualitative methoden
dc.subject.thesozFragebogende
dc.subject.thesozquestionnaireen
dc.subject.thesozCodierungde
dc.subject.thesozcodingen
dc.subject.thesozAutomatisierungde
dc.subject.thesozautomationen
dc.subject.thesozDatenqualitätde
dc.subject.thesozdata qualityen
dc.subject.thesozUmfrageforschungde
dc.subject.thesozsurvey researchen
dc.rights.licenceDeposit Licence - Keine Weiterverbreitung, keine Bearbeitungde
dc.rights.licenceDeposit Licence - No Redistribution, No Modificationsen
internal.statusformal und inhaltlich fertig erschlossen
internal.identifier.thesoz10040547
internal.identifier.thesoz10052182
internal.identifier.thesoz10037914
internal.identifier.thesoz10040334
internal.identifier.thesoz10037519
internal.identifier.thesoz10055811
internal.identifier.thesoz10040714
dc.type.stockarticle
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
dc.source.pageinfo143-152
internal.identifier.classoz10105
internal.identifier.journal674
internal.identifier.document32
internal.identifier.ddc300
dc.identifier.doihttps://doi.org/10.18148/srm/2016.v10i2.6213
dc.subject.methodsGrundlagenforschungde
dc.subject.methodsbasic researchen
dc.subject.methodsMethodenentwicklungde
dc.subject.methodsdevelopment of methodsen
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence3
internal.identifier.methods8
internal.identifier.methods11
internal.identifier.pubstatus1
internal.identifier.review1
internal.pdf.version1.4
internal.pdf.validfalse
internal.pdf.wellformedtrue
internal.check.abstractlanguageharmonizerCERTAIN


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record