SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(2.029Mb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-49482-6

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Nonparametric modeling of buying behavior in fast moving consumer goods markets

Nichtparametrische Modellierung des Kaufverhaltens auf Märkten für kurzlebige Konsumgüter
[conference paper]

Boztug, Yasemin
Hildebrandt, Lutz

Corporate Editor
Zentrum für Umfragen, Methoden und Analysen -ZUMA-

Abstract

"From the statistical point of view a nonparametric formulation of a brand choice model (NDE) is a powerful alternative to the logit model. But in the marketing context, researchers in general want to have parameter values to make predictions or to estimate market shares. This leads to a semiparamet... view more

"From the statistical point of view a nonparametric formulation of a brand choice model (NDE) is a powerful alternative to the logit model. But in the marketing context, researchers in general want to have parameter values to make predictions or to estimate market shares. This leads to a semiparametric model (GAM) formulation with two possible ways of using the results. One is to perform estimation of choice probabilities, but there one is confronted with the same problem as in the nonparametric approach, because no parameters are estimated for the nonparametric part of the model. The second possibility of a semiparametric model formulation overcomes this problem. In addition, with the estimation results a modified parametric model formulation can be estimated. This also gives the possibility to work with the parameter values to estimate market shares or make predictions. Especially for this use of modeling, the underlying data structure should be detected correctly. Therefore, two different estimation algorithms for a GAM were presented and the application of the semiparametric model to a real data set was reported. The estimations were made by the two common algorithms, backfitting and marginal integration, and are compared to each other. An interaction effect in the variable price in the data set was discovered, which leads to the need of additional studies of the data set." (author's abstract)... view less

Keywords
consumer; consumer goods; buying behavior; economic model; data; statistical analysis; research approach; method; estimation; non-linear model; parameter; market; Federal Republic of Germany

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods
National Economy

Method
empirical; quantitative empirical

Collection Title
Social and economic research with consumer panel data : proceedings of the first ZUMA Symposium on Consumer Panel Data, 5 and 6 October 1999

Editor
Papastefanou, Georgios; Schmidt, Peter; Börsch-Supan, Axel; Lüdtke, Hartmut; Oltersdorf, Ulrich

Conference
1. ZUMA Symposium on Consumer Panel Data. Mannheim, 1999

Document language
English

Publication Year
2001

City
Mannheim

Page/Pages
p. 189-205

Series
ZUMA-Nachrichten Spezial, 7

ISBN
3-924220-21-2

Status
Published Version; reviewed

Licence
Deposit Licence - No Redistribution, No Modifications


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.