SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.18148/srm/2012.v6i3.5130

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Robust Lavallee-Hidiroglou stratified sampling strategy

Robuste geschichtete Lavallee-Hidiroglou-Sample-Strategie
[journal article]

Bramati, Maria Caterina

Abstract

"There are several reasons why robust regression techniques are useful tools in sampling design. First of all, when stratified samples are considered, one needs to deal with three main issues: the sample size, the strata bounds determination and the sample allocation in the strata. Since the target ... view more

"There are several reasons why robust regression techniques are useful tools in sampling design. First of all, when stratified samples are considered, one needs to deal with three main issues: the sample size, the strata bounds determination and the sample allocation in the strata. Since the target variable Y, the objective of the survey, is unknown, some auxiliary information X known for the entire population from which the sample is drawn, is used. Such information is helpful as it is typically strongly correlated with the target Y. However, some discrepancies between these variables may arise. The use of auxiliary information, combined with the choice of the appropriate statistical model to estimate the relationship between Y and X, is crucial for the determination of the strata bounds, the size of the sample and the sampling rates according to a chosen precision level for the estimates, as has been shown by Rivest (2002). Nevertheless, this regression-based approach is highly sensitive to the presence of contaminated data. Since the key tool for stratified sampling is the measure of scale of Y conditional on the knowledge of the auxiliary X, a robust approach based on the S-estimator of the regression is proposed in this paper. The aim is to allow for robust sample size and strata bounds determination, together with optimal sample allocation. Simulation results based on data from the Construction sector of a Structural Business Survey illustrate the advantages of the proposed method." (author's abstract)... view less

Keywords
data collection method; survey; statistics; statistical analysis; statistical method; simulation; data; data preparation; data organization; data quality

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Document language
English

Publication Year
2012

Page/Pages
p. 137-143

Journal
Survey Research Methods, 6 (2012) 3

Issue topic
Papers from ITACOSM11

ISSN
1864-3361

Status
Published Version; peer reviewed

Licence
Deposit Licence - No Redistribution, No Modifications


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.