SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.18148/srm/2011.v5i2.4678

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Measurement quality in indicators of compositions: a compositional multitrait-multimethod approach

Qualitätsmessung bei Kompositionsindikatoren: ein kompositioneller Multitrait-Multimethod-Ansatz
[Zeitschriftenartikel]

Coenders, Germà
Hlebec, Valentina
Kogovsek, Tina

Abstract

"Compositional data, also called multiplicative ipsative data, are common in survey research instruments in areas such as time use, budget expenditure and social networks. Compositional data are usually expressed as proportions of a total, whose sum can only be 1. Owing to their constrained nature, ... mehr

"Compositional data, also called multiplicative ipsative data, are common in survey research instruments in areas such as time use, budget expenditure and social networks. Compositional data are usually expressed as proportions of a total, whose sum can only be 1. Owing to their constrained nature, statistical analysis in general, and estimation of measurement quality with a confirmatory factor analysis model for multitrait-multimethod (MTMM) designs in particular are challenging tasks. Compositional data are highly non-normal, as they range within the 0-1 interval. One component can only increase if some other(s) decrease, which results in spurious negative correlations among components which cannot be accounted for by the MTMM model parameters. In this article the authors show how researchers can use the correlated uniqueness model for MTMM designs in order to evaluate measurement quality of compositional indicators. They suggest using the additive log ratio transformation of the data, discuss several approaches to deal with zero components and explain how the interpretation of MTMM designs differs from the application to standard unconstrained data. The authors show an illustration of the method on data of social network composition expressed in percentages of partner, family, friends and other members in which they conclude that the face-to-face collection mode is generally superior to the telephone mode, although primacy effects are higher in the face-to-face mode. Compositions of strong ties (such as partner) are measured with higher quality than those of weaker ties (such as other network members)." (author's abstract)... weniger

Thesaurusschlagwörter
Datengewinnung; Methodenforschung; Datenqualität; Methode; Datenerfassung; Datenorganisation; Messung; Daten; Erhebungsmethode

Klassifikation
Allgemeines, spezielle Theorien und Schulen, Methoden, Entwicklung und Geschichte der Psychologie
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Sprache Dokument
Englisch

Publikationsjahr
2011

Seitenangabe
S. 63-74

Zeitschriftentitel
Survey Research Methods, 5 (2011) 2

ISSN
1864-3361

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Deposit Licence - Keine Weiterverbreitung, keine Bearbeitung


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.