SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(910.5Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-427053

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Finding Respondents in the Forest: A Comparison of Logistic Regression and Random Forest Models for Response Propensity Weighting and Stratification

[journal article]

Buskirk, Trent D.
Kolenikov, Stanislav

Abstract

Survey response rates for modern surveys using many different modes are trending downward leaving the potential for nonresponse biases in estimates derived from using only the respondents. The reasons for nonresponse may be complex functions of known auxiliary variables or unknown latent variables... view more

Survey response rates for modern surveys using many different modes are trending downward leaving the potential for nonresponse biases in estimates derived from using only the respondents. The reasons for nonresponse may be complex functions of known auxiliary variables or unknown latent variables not measured by practitioners. The degree to which the propensity to respond is associated with survey outcomes casts light on the overall potential for nonresponse biases for estimates of means and totals. The most common method for nonresponse adjustments to compensate for the potential bias in estimates has been logistic and probit regression models. However, for more complex nonresponse mechanisms that may be nonlinear or involve many interaction effects, these methods may fail to converge and thus fail to generate nonresponse adjustments for the sampling weights. In this paper we compare these traditional techniques to a relatively new data mining technique- random forests – under a simple and complex nonresponse propensity population model using both direct and propensity stratification nonresponse adjustments. Random forests appear to offer marginal improvements for the complex response model over logistic regression in direct propensity adjustment, but have some surprising results for propensity stratification across both response models.... view less

Keywords
random sample; weighting; sampling error; regression analysis; model construction; regression; measurement; social stratification; response behavior; survey research; estimation

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Document language
English

Publication Year
2015

Page/Pages
p. 1-17

Journal
Survey Methods: Insights from the Field (2015)

Issue topic
Weighting: Practical Issues and ‘How to’ Approach

DOI
https://doi.org/10.13094/SMIF-2015-00003

ISSN
2296-4754

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution-Noncommercial-No Derivative Works


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.