SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(4.524Mb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-326017

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Discovering Links for Metadata Enrichment on Computer Science Papers

[working paper]

Schaible, Johann
Mayr, Philipp

Corporate Editor
GESIS - Leibniz-Institut für Sozialwissenschaften

Abstract

At the very beginning of compiling a bibliography, usually only basic information, such as title, authors and publication date of an item are known. In order to gather additional information about a specific item, one typically has to search the library catalog or use a web search engine. This loo... view more

At the very beginning of compiling a bibliography, usually only basic information, such as title, authors and publication date of an item are known. In order to gather additional information about a specific item, one typically has to search the library catalog or use a web search engine. This look-up procedure implies a manual effort for every single item of a bibliography. In this technical report we present a proof of concept which utilizes Linked Data technology for the simple enrichment of sparse metadata sets. This is done by discovering owl:sameAs links between an initial set of computer science papers and resources from external data sources like DBLP, ACM and the Semantic Web Conference Corpus. In this report, we demonstrate how the link discovery tool Silk is used to detect additional information and to enrich an initial set of records in the computer science domain. The pros and cons of silk as link discovery tool are summarized in the end.... view less

Keywords
bibliography; automation; computer science; software; information science; new technology

Classification
Information and Documentation, Libraries, Archives
Natural Science and Engineering, Applied Sciences

Free Keywords
bibliographische Daten; Linked Data

Document language
English

Publication Year
2012

City
Mannheim

Page/Pages
22 p.

Series
GESIS-Technical Reports, 2012/10

Status
Published Version; reviewed

Licence
Deposit Licence - No Redistribution, No Modifications


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.