SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://hdl.handle.net/10419/55228

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Quantitative forecast model for the application of the Black-Litterman approach

[Arbeitspapier]

Becker, Franziska
Gürtler, Marc

Körperschaftlicher Herausgeber
Technische Universität Braunschweig, Department Wirtschaftswissenschaften, Institut für Finanzwirtschaft

Abstract

"The estimation of expected security returns is one of the major tasks for the practical implementation of the Markowitz portfolio optimization. Against this background, in 1992 Black and Litterman developed an approach based on (theoretically established) expected equilibrium returns which accounts... mehr

"The estimation of expected security returns is one of the major tasks for the practical implementation of the Markowitz portfolio optimization. Against this background, in 1992 Black and Litterman developed an approach based on (theoretically established) expected equilibrium returns which accounts for subjective investors’ views as well. In contrast to historical estimated returns, which lead to extreme asset weights within the Markowitz optimization, the Black-Litterman model generally results in balanced portfolio weights. However, the existence of investors’ views is crucial for the Black- Litterman model and with absent views no active portfolio management is possible. Moreover, problems with the implementation of the model arise, as analysts’ forecasts are typically not available in the way they are needed for the Black-Litterman-approach. In this context we present how analysts’ dividend forecasts can be used to determine an a-priori-estimation of the expected returns and how they can be integrated into the Black-Litterman model. For this purpose, confidences of the investors’ views are determined from the number of analysts’ forecasts as well as from a Monte-Carlo simulation. After introducing our two methods of view generation, we examine the effects of the Black-Litterman approach on portfolio weights in an empirical study. Finally, the perfor-mance of the Black-Litterman model is compared to alternative portfolio allocation strategies in an out-of-sample study." (author's abstract)... weniger

Thesaurusschlagwörter
Zinssatz; Eigenkapital; Kapital; Geschäftsführung; Ertrag

Klassifikation
Finanzwirtschaft, Rechnungswesen

Freie Schlagwörter
analysts’ earnings forecasts; discount rate effect; equity premium puzzle; implied rate of return

Sprache Dokument
Englisch

Publikationsjahr
2008

Erscheinungsort
Braunschweig

Seitenangabe
28 S.

Schriftenreihe
IF Working Paper Series, IF27V2

Handle
https://hdl.handle.net/10419/55228

Status
begutachtet

Lizenz
Deposit Licence - Keine Weiterverbreitung, keine Bearbeitung

DatenlieferantDieser Metadatensatz wurde vom Sondersammelgebiet Sozialwissenschaften (USB Köln) erstellt.


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.