SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(400.9 KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-239207

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Modeling Unobserved Heterogeneity in Contingent Valuation of Health Risks

[Zeitschriftenartikel]

Arana, Jorge E.
León, Carmelo

Abstract

Human preferences for alternative levels of health risks can be heterogeneous. In this paper we consider a flexible distribution approach to model health values elicited with the dichotomous choice contingent valuation method. Rigid parametric structures cannot model sample heterogeneity while impos... mehr

Human preferences for alternative levels of health risks can be heterogeneous. In this paper we consider a flexible distribution approach to model health values elicited with the dichotomous choice contingent valuation method. Rigid parametric structures cannot model sample heterogeneity while imposing strong assumptions on the error distribution. We consider a mixture of normal distributions which can approximate arbitrary well any empirical distribution as the number of mixtures increases. The model is applied to data on willingness to pay for reducing the individual risk of an episode of respiratory illness. The mixture distribution model is compared with the rigid probit model using a Bayes factor test. The results show that the mixture modeling approach improves performance while allowing for the consideration of alternative groups of individuals with different preferences for health risks.... weniger

Sprache Dokument
Englisch

Publikationsjahr
2006

Seitenangabe
S. 2315-2325

Zeitschriftentitel
Applied Economics, 38 (2006) 19

DOI
https://doi.org/10.1080/00036840500427460

Status
Postprint; begutachtet (peer reviewed)

Lizenz
PEER Licence Agreement (applicable only to documents from PEER project)


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.