SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(3.747 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-220908

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Value-at-risk forecasts under scrutiny - the German experience

[Zeitschriftenartikel]

Jaschke, Stefan
Stahl, Gerhard
Stehle, Richard

Abstract

We present an analysis of the VaR forecasts and the P&L-series of all 12 German banks that used internal models for regulatory purposes throughout the period from the beginning of 2001 to the end of 2004. One task of a supervisor is to estimate the 'recalibration factor', i.e., by how much a bank ov... mehr

We present an analysis of the VaR forecasts and the P&L-series of all 12 German banks that used internal models for regulatory purposes throughout the period from the beginning of 2001 to the end of 2004. One task of a supervisor is to estimate the 'recalibration factor', i.e., by how much a bank over- or underestimates its VaR. The Basel traffic light approach to backtesting, which maps the count of exceptions in the trailing year to a multiplicative penalty factor, can be viewed as a way to estimate the 'recalibration factor'. We introduce techniques that provide a much more powerful inference on the recalibration factor than the Basel approach based on the count of exceptions. The notions 'return on VaR (RoVaR)' and 'well-behaved forecast system' are keys to linking the problem at hand to the established literature on the evaluation of density forecasts. We perform extensive bootstrapping analyses allowing (1) an assessment of the accuracy of our estimates of the recalibration factor and (2) a comparison of the estimation error of different scale and quantile estimators. Certain robust estimators turn out to outperform the more popular estimators used in the literature. Empirical results for the non-public data are compared to the corresponding results for hypothetical portfolios based on publicly available market data. While these comparisons have to be interpreted with care since the banks' P&L data tend to be more contaminated with errors than the major market indices, they shed light on the similarities and differences between banks' RoVaRs and market index returns.... weniger

Klassifikation
Wirtschaftsstatistik, Ökonometrie, Wirtschaftsinformatik
Volkswirtschaftslehre
Wirtschaftspolitik

Freie Schlagwörter
Banking supervision; VaR; Exploratory data analysis; Backtesting

Sprache Dokument
Englisch

Publikationsjahr
2007

Seitenangabe
S. 621-636

Zeitschriftentitel
Quantitative Finance, 7 (2007) 6

DOI
https://doi.org/10.1080/14697680600999104

Status
Postprint; begutachtet (peer reviewed)

Lizenz
PEER Licence Agreement (applicable only to documents from PEER project)


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.