SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(792.8 KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-213463

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Estimating potential outcome distributions using local instrumental variables with an application to changes in college enrollment and wage inequality

[Zeitschriftenartikel]

Carneiro, Pedro
Lee, Sokbae

Abstract

This paper extends the method of local instrumental variables developed by Heckman and Vytlacil [Heckman, J. and Vytlacil, E., 1999. Local instrumental variable and latent variable models for identifying and bounding treatment effects. In: Proceedings of the National Academy of Sciences, 96, 4730–47... mehr

This paper extends the method of local instrumental variables developed by Heckman and Vytlacil [Heckman, J. and Vytlacil, E., 1999. Local instrumental variable and latent variable models for identifying and bounding treatment effects. In: Proceedings of the National Academy of Sciences, 96, 4730–4734; Heckman, J. and Vytlacil, E., 2001. Local Instrumental Variables. In: C. Hsiao, K. Morimune, and J. Powells, (Eds.), Nonlinear Statistical Modeling: Proceedings of the Thirteenth International Symposium in Economic Theory and Econometrics: Essays in Honor of Takeshi Amemiya, Cambridge University Press, Cambridge, (2000), pp. 1–46; Heckman, J. and Vytlacil E., 2005. Structural equations, treatment, effects and econometric policy evaluation. Econometrica 73(3), 669–738] to the estimation of not only means, but also distributions of potential outcomes. The newly developed method is illustrated by applying it to changes in college enrollment and wage inequality using data from the National Longitudinal Survey of Youth of 1979. Increases in college enrollment cause changes in the distribution of ability among college and high school graduates. This paper estimates a semiparametric selection model of schooling and wages to show that, for fixed skill prices, a 14% increase in college participation (analogous to the increase observed in the 1980s), reduces the college premium by 12% and increases the 90-10 percentile ratio among college graduates by 2%.... weniger

Klassifikation
Wirtschaftsstatistik, Ökonometrie, Wirtschaftsinformatik

Freie Schlagwörter
C14; C31; J31; Comparative advantage; Composition effects; Local instrumental variables; Marginal treatment effect; Semiparametric estimation; Wage inequality

Sprache Dokument
Englisch

Publikationsjahr
2009

Seitenangabe
S. 191-208

Zeitschriftentitel
Journal of Econometrics, 149 (2009) 2

DOI
https://doi.org/10.1016/j.jeconom.2009.01.011

Status
Postprint; begutachtet (peer reviewed)

Lizenz
PEER Licence Agreement (applicable only to documents from PEER project)


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 

Diese Webseite verwendet Cookies. Die Datenschutzerklärung bietet Ihnen weitere Informationen, auch über Ihr Widerspruchsrecht.