SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(320.2Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-212384

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Quantiles, expectiles and splines

[journal article]

DeRossi, Giuliano
Harvey, Andrew

Abstract

A time-varying quantile can be fitted by formulating a time series model for the corresponding population quantile and iteratively applying a suitably modified state space signal extraction algorithm. It is shown that such quantiles satisfy the defining property of fixed quantiles in having the appr... view more

A time-varying quantile can be fitted by formulating a time series model for the corresponding population quantile and iteratively applying a suitably modified state space signal extraction algorithm. It is shown that such quantiles satisfy the defining property of fixed quantiles in having the appropriate number of observations above and below. Like quantiles, time-varying expectiles can be estimated by a state space signal extraction algorithm and they satisfy properties that generalize the moment conditions associated with fixed expectiles. Because the state space form can handle irregularly spaced observations, the proposed algorithms can be adapted to provide a viable means of computing spline-based non-parametric quantile and expectile regressions.... view less

Classification
Economic Statistics, Econometrics, Business Informatics

Free Keywords
C14; C22; Asymmetric least squares; Cubic splines; Quantile regression; Signal extraction; State space smoother

Document language
English

Publication Year
2009

Page/Pages
p. 179-185

Journal
Journal of Econometrics, 152 (2009) 2

DOI
https://doi.org/10.1016/j.jeconom.2009.01.001

Status
Postprint; peer reviewed

Licence
PEER Licence Agreement (applicable only to documents from PEER project)


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.