Show simple item record

[journal article]

dc.contributor.authorSchmitt, Marcel C.de
dc.contributor.authorVogelsmeier, Leonie V. D. E.de
dc.contributor.authorErbas, Yaseminde
dc.contributor.authorStuber, Simonde
dc.contributor.authorLischetzke, Tanjade
dc.date.accessioned2025-09-23T13:27:05Z
dc.date.available2025-09-23T13:27:05Z
dc.date.issued2024de
dc.identifier.issn1532-7906de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/105013
dc.description.abstractEmotional granularity (EG) is an individual's ability to describe their emotional experiences in a nuanced and specific way. In this paper, we propose that researchers adopt latent Markov factor analysis (LMFA) to investigate within-person variability in qualitative EG (i.e., variability in distinct granularity patterns between specific emotions across time). LMFA clusters measurement occasions into latent states according to state-specific measurement models. We argue that state-specific measurement models of repeatedly assessed emotion items can provide information about qualitative EG at a given point in time. Applying LMFA to the area of EG for negative and positive emotions separately by using data from an experience sampling study with 11,662 measurement occasions across 139 participants, we found three latent EG states for the negative emotions and three for the positive emotions. Momentary stress significantly predicted transitions between the EG states for both the negative and positive emotions. We further identified two and three latent classes of individuals who differed in state trajectories for negative and positive emotions, respectively. Neuroticism and dispositional mood regulation predicted latent class membership for negative (but not for positive) emotions. We conclude that LMFA may enrich EG research by enabling more fine-grained insights into variability in qualitative EG patterns.de
dc.languageende
dc.subject.ddcPsychologiede
dc.subject.ddcPsychologyen
dc.subject.otheremotional granularity; emotion differentiation; latent Markov factor analysis; qualitative differences; Die deutsche Version des Big Five Inventory 2 (BFI-2) (ZIS 247, doi:10.6102/zis247)de
dc.titleExploring Within-Person Variability in Qualitative Negative and Positive Emotional Granularity by Means of Latent Markov Factor Analysisde
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.source.journalMultivariate Behavioral Research
dc.source.volume59de
dc.publisher.countryUSAde
dc.source.issue4de
dc.subject.classozAllgemeines, spezielle Theorien und Schulen, Methoden, Entwicklung und Geschichte der Psychologiede
dc.subject.classozBasic Research, General Concepts and History of Psychologyen
dc.subject.thesozGefühlde
dc.subject.thesozemotionen
dc.subject.thesozDifferenzierungde
dc.subject.thesozdifferentiationen
dc.subject.thesozDifferenzde
dc.subject.thesozdifferenceen
dc.subject.thesozStimmungde
dc.subject.thesozmooden
dc.subject.thesozNeurotizismusde
dc.subject.thesozneuroticismen
dc.identifier.urnurn:nbn:de:0168-ssoar-105013-3
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
ssoar.contributor.institutionFDBde
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10096390
internal.identifier.thesoz10038458
internal.identifier.thesoz10069192
internal.identifier.thesoz10069970
internal.identifier.thesoz10053198
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
dc.source.pageinfo781-800de
internal.identifier.classoz10701
internal.identifier.journal3508
internal.identifier.document32
internal.identifier.ddc150
dc.identifier.doihttps://doi.org/10.1080/00273171.2024.2328381de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
internal.pdf.validfalse
internal.pdf.wellformedtrue
internal.pdf.encryptedfalse


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record