Show simple item record

[journal article]

dc.contributor.authorDaikeler, Jessicade
dc.contributor.authorFröhling, Leonde
dc.contributor.authorSen, Indirade
dc.contributor.authorBirkenmaier, Lukasde
dc.contributor.authorGummer, Tobiasde
dc.contributor.authorSchwalbach, Jande
dc.contributor.authorSilber, Henningde
dc.contributor.authorWeiß, Berndde
dc.contributor.authorWeller, Katrinde
dc.contributor.authorLechner, Clemensde
dc.date.accessioned2025-09-17T13:48:03Z
dc.date.available2025-09-17T13:48:03Z
dc.date.issued2025de
dc.identifier.issn1552-8286de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/104887
dc.description.abstractWhile survey data has long been the focus of quantitative social science analyses, observational and content data, although long-established, are gaining renewed attention; especially when this type of data is obtained by and for observing digital content and behavior. Today, digital technologies allow social scientists to track “everyday behavior” and to extract opinions from public discussions on online platforms. These new types of digital traces of human behavior, together with computational methods for analyzing them, have opened new avenues for analyzing, understanding, and addressing social science research questions. However, even the most innovative and extensive amounts of data are hollow if they are not of high quality. But what does data quality mean for modern social science data? To investigate this rather abstract question the present study focuses on four objectives. First, we provide researchers with a decision tree to identify appropriate data quality frameworks for a given use case. Second, we determine which data types and quality dimensions are already addressed in the existing frameworks. Third, we identify gaps with respect to different data types and data quality dimensions within the existing frameworks which need to be filled. And fourth, we provide a detailed literature overview for the intrinsic and extrinsic perspectives on data quality. By conducting a systematic literature review based on text mining methods, we identified and reviewed 58 data quality frameworks. In our decision tree, the three categories, namely, data type, the perspective it takes, and its level of granularity, help researchers to find appropriate data quality frameworks. We, furthermore, discovered gaps in the available frameworks with respect to visual and especially linked data and point out in our review that even famous frameworks might miss important aspects. The article ends with a critical discussion of the current state of the literature and potential future research avenues.de
dc.languageende
dc.subject.ddcSozialwissenschaften, Soziologiede
dc.subject.ddcSocial sciences, sociology, anthropologyen
dc.subject.otherdata quality concepts; data quality frameworks; systematic reviewde
dc.titleAssessing Data Quality in the Age of Digital Social Research: A Systematic Reviewde
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.identifier.urllocalfile:/var/local/dda-files/prod/crawlerfiles/d977ca41637a4027905ca963318611e4/d977ca41637a4027905ca963318611e4.pdfde
dc.source.journalSocial Science Computer Review
dc.source.volume43de
dc.publisher.countryUSAde
dc.source.issue5de
dc.subject.classozErhebungstechniken und Analysetechniken der Sozialwissenschaftende
dc.subject.classozMethods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methodsen
dc.subject.thesozSozialforschungde
dc.subject.thesozsocial researchen
dc.subject.thesozDatenqualitätde
dc.subject.thesozdata qualityen
dc.subject.thesozMessungde
dc.subject.thesozmeasurementen
dc.subject.thesozRepräsentationde
dc.subject.thesozrepresentationen
dc.subject.thesozDatengewinnungde
dc.subject.thesozdata captureen
dc.subject.thesozSozialwissenschaftde
dc.subject.thesozsocial scienceen
dc.subject.thesozDigitalisierungde
dc.subject.thesozdigitalizationen
dc.identifier.urnurn:nbn:de:0168-ssoar-104887-3
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
ssoar.contributor.institutionGESISde
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10042041
internal.identifier.thesoz10055811
internal.identifier.thesoz10036930
internal.identifier.thesoz10056648
internal.identifier.thesoz10040547
internal.identifier.thesoz10058540
internal.identifier.thesoz10063943
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
dc.source.pageinfo943-979de
internal.identifier.classoz10105
internal.identifier.journal645
internal.identifier.document32
internal.identifier.ddc300
dc.identifier.doihttps://doi.org/10.1177/08944393241245395de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
ssoar.wgl.collectiontruede
internal.dda.referencecrawler-deepgreen-1402@@d977ca41637a4027905ca963318611e4


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record