SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(1.575 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-104484-8

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Neighbourhood structure and environmental quality: A fine-grained analysis of spatial inequalities in urban Germany

[Zeitschriftenartikel]

König, Christian

Abstract

Urban environments are characterised by sparsity of space, elevated levels of air pollution and limited exposure to natural environments. Yet, residential environmental quality varies substantially both between and within cities. This study combines information on the socio-economic and demographic ... mehr

Urban environments are characterised by sparsity of space, elevated levels of air pollution and limited exposure to natural environments. Yet, residential environmental quality varies substantially both between and within cities. This study combines information on the socio-economic and demographic composition of 243,607 urban neighbourhoods with administrative and remote sensing data on the spatial distribution of industrial plants and urban green space to investigate patterns of environmental inequality in urban Germany at unprecedented levels of spatial granularity. It disentangles neighbourhood disadvantages experienced by foreign minorities (non-nationals) from those experienced by low-income households in order to assess the plausibility of economic explanations of residential sorting. The high level of spatial granularity makes it possible to examine patterns of environmental inequality not only between the relatively large areas that have been used as units of analysis in previous work but also within them, while reducing the threat of ecological bias. Results indicate that non-nationals are more likely to be exposed to industrial air pollution and less likely to live close to green spaces. This association holds even after adjusting for neighbourhood income composition and in fixed-effects specifications that restrict the analysis to within-city variation. I find no evidence for environmental inequality by socio-economic status. Exploratory sub-sample analyses show that neighbourhood disadvantages for non-nationals are higher in cities characterised by high levels of anti-foreigner sentiment, pointing towards housing market discrimination as a potentially important driver of foreign residents’ neighbourhood disadvantage.... weniger

Thesaurusschlagwörter
Stadtgebiet; Flächennutzung; Umweltfreundlichkeit; Ungleichheit; Nachbarschaft; Sozialstruktur; Segregation; Wohnungsmarkt; Benachteiligung; Bundesrepublik Deutschland

Klassifikation
Siedlungssoziologie, Stadtsoziologie
Raumplanung und Regionalforschung

Freie Schlagwörter
environmental justice; race/ethnicity; residential sorting

Sprache Dokument
Englisch

Publikationsjahr
2024

Seitenangabe
S. 1968-1989

Zeitschriftentitel
Urban studies, 61 (2024) 10

DOI
https://doi.org/10.1177/00420980231224224

ISSN
1360-063X

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.