SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.22178/pos.119-20

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Deep Learning Approaches to Identify Subtle Anomalies in Prenatal Ultrasound Imaging

[Zeitschriftenartikel]

Agboola, Olasoji O.
Kuye, Oludare Olukayode
Adenowo, Thomas K.

Abstract

This research investigated deep learning approaches for detecting subtle anomalies in prenatal ultrasound imaging. Congenital anomalies affect approximately 6% of births worldwide, with detection rates for subtle defects varying significantly based on operator expertise. A multi-institutional datase... mehr

This research investigated deep learning approaches for detecting subtle anomalies in prenatal ultrasound imaging. Congenital anomalies affect approximately 6% of births worldwide, with detection rates for subtle defects varying significantly based on operator expertise. A multi-institutional dataset comprising 12,450 prenatal ultrasound examinations from three tertiary care centres was employed to develop and evaluate multiple deep learning architectures, including modified convolutional neural networks, generative adversarial networks, autoencoders, and feature fusion approaches. The ensemble approach, which combines these architectures, achieved an overall accuracy of 91.4% and 89.8% accuracy for subtle anomalies, specifically substantially exceeding previous benchmarks. Feature visualisation confirmed that models focused on anatomically appropriate regions when making predictions. Performance varied across anomaly categories, with cardiac defects presenting the most significant challenges. The research identified meaningful relationships between model confidence and clinical significance, with higher sensitivity for anomalies requiring immediate intervention. Expert evaluation confirmed that models occasionally detected subtle findings that were missed during routine interpretation, suggesting a potential complementary role between automated systems and human expertise. The findings demonstrate significant progress toward addressing the challenges of subtle anomaly detection in prenatal ultrasound while identifying important directions for future refinement.... weniger

Thesaurusschlagwörter
Datenschutz

Klassifikation
Medizin, Sozialmedizin

Freie Schlagwörter
Healthcare policymakers; Healthcare organisations; Data governance; Privacy protocols; Ethical implementation; Robust data management; Integration of diagnostic technologies

Sprache Dokument
Englisch

Publikationsjahr
2025

Seitenangabe
S. 3019-3026

Zeitschriftentitel
Path of Science, 11 (2025) 6

ISSN
2413-9009

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.