SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(858.9Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-103428-4

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Simulation of Calibrated Complex Synthetic Population Data with XGBoost

[journal article]

Gussenbauer, Johannes
Templ, Matthias
Fritzmann, Siro
Kowarik, Alexander

Abstract

Syntheticdata generation methods are used to transform the original data into privacy-compliant synthetic copies (twin data). With our proposed approach, synthetic data can be simulated in the same size as the input data or in any size, and in the case of finite populations, even the entire populati... view more

Syntheticdata generation methods are used to transform the original data into privacy-compliant synthetic copies (twin data). With our proposed approach, synthetic data can be simulated in the same size as the input data or in any size, and in the case of finite populations, even the entire population can be simulated. The proposed XGBoost-based method is compared with known model-based approaches to generate synthetic data using a complex survey data set. The XGBoost method shows strong performance, especially with synthetic categorical variables, and outperforms other tested methods. Furthermore, the structure and relationship between variables are well preserved. The tuning of the parameters is performed automatically by a modified k-fold cross-validation. If exact population margins are known, e.g., cross-tabulated population counts on age class, gender and region, the synthetic data must be calibrated to those known population margins. For this purpose, we have implemented a simulated annealing algorithm that is able to use multiple population margins simultaneously to post-calibrate a synthetic population. The algorithm is, thus, able to calibrate simulated population data containing cluster and individual information, e.g., about persons in households, at both person and household level. Furthermore, the algorithm is efficiently implemented so that the adjustment of populations with many millions or more persons is possible.... view less

Keywords
privacy; data; simulation; data preparation; statistical method; methodological research

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
complex survey data; synthetic populations; XGBoost; calibration of populations; EU-SILC 2013

Document language
English

Publication Year
2024

Page/Pages
p. 1-28

Journal
Algorithms, 17 (2024) 6

DOI
https://doi.org/10.3390/a17060249

ISSN
1999-4893

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.