SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(1.149 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-103302-8

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Political Polarization Mechanics on Persian Twitter (X): A Social Network Analysis of the 2024 Iranian Presidential Election

[Zeitschriftenartikel]

Shahidi, Mahshid
Hassani, Hossein
Haddady, Marzieh

Abstract

Background: The 2024 Iranian presidential election intensified political polarization on Persian Twitter (X), where ideological factions engaged in networked contestation. This study employs social network analysis to examine polarization mechanics, mapping key actors, echo chambers, and discursive ... mehr

Background: The 2024 Iranian presidential election intensified political polarization on Persian Twitter (X), where ideological factions engaged in networked contestation. This study employs social network analysis to examine polarization mechanics, mapping key actors, echo chambers, and discursive strategies. Findings illuminate digital factionalism, algorithmic amplification, and the role of influencers in political mobilization. Aims: This study explores the mechanisms driving political polarization on Persian Twitter (X) during the 2024 Iranian presidential election. Methodology: Utilizing computational social science methodologies, the research combines social network analysis (SNA) and thematic analysis to examine over 133,000 active users and numerous election-related hashtags. Data collection spanned June 1-16, 2024, leveraging Twitter's API to identify clusters, user interactions, and thematic trends. Key tools included the Louvain algorithm for community detection and centrality measures for network analysis, visualized through Gephi software. Findings: Findings reveal a fragmented political landscape characterized by ideological divides, echo chambers, and limited interaction between opposing factions. Analysis identified six major clusters, each aligned with distinct political affiliations, including reformists, conservatives, and opposition groups. Thematic analysis further highlighted the rhetoric surrounding leading candidates Masoud Pezeshkian and Saeed Jalili, revealing polarized sentiments and distinct narratives among their supporters and detractors. The study also underscores the role of platform algorithms, influencer strategies, and group identities in deepening polarization. Conclusions: This research contributes to the understanding of digital polarization within Iran's socio-political context. It emphasizes the dual role of social media as both a space for public discourse and a driver of ideological segregation. Recommendations include strategies for promoting digital literacy, fostering inclusive discussions, and enhancing algorithmic transparency to mitigate polarization in Iran.... weniger

Thesaurusschlagwörter
Iran; Twitter; politische Partizipation; soziales Netzwerk; Präsidentschaftswahl; politische Ideologie; Polarisierung

Klassifikation
politische Willensbildung, politische Soziologie, politische Kultur
interaktive, elektronische Medien

Freie Schlagwörter
echo chambers; social network analysis; 2024 Iranian presidential election

Sprache Dokument
Englisch

Publikationsjahr
2025

Seitenangabe
S. 175-201

Zeitschriftentitel
Journal of Cyberspace Studies, 9 (2025) 1

DOI
https://doi.org/10.22059/jcss.2025.388449.1122

ISSN
2588-5502

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung, Nicht-kommerz. 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.