Show simple item record

[journal article]

dc.contributor.authorJunker, Stephande
dc.contributor.authorDamerow, Stefande
dc.contributor.authorWalther, Lenade
dc.contributor.authorMauz, Elvirade
dc.date.accessioned2025-06-17T06:34:54Z
dc.date.available2025-06-17T06:34:54Z
dc.date.issued2023de
dc.identifier.issn2296-2565de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/102985
dc.description.abstractIn the course of the COVID-19 pandemic and the implementation of associated non-pharmaceutical containment measures, the need for continuous monitoring of the mental health of populations became apparent. When the pandemic hit Germany, a nationwide Mental Health Surveillance (MHS) was in conceptual development at Germany’s governmental public health institute, the Robert Koch Institute. To meet the need for high-frequency reporting on population mental health we developed a prototype that provides monthly estimates of several mental health indicators with smoothing splines. We used data from the telephone surveys German Health Update (GEDA) and COVID-19 vaccination rate monitoring in Germany (COVIMO). This paper provides a description of the highly automated data pipeline that produces time series data for graphical representations, including details on data collection, data preparation, calculation of estimates, and output creation. Furthermore, statistical methods used in the weighting algorithm, model estimations for moving three-month predictions as well as smoothing techniques are described and discussed. Generalized additive modelling with smoothing splines best meets the desired criteria with regard to identifying general time trends. We show that the prototype is suitable for a population-based high-frequency mental health surveillance that is fast, flexible, and able to identify variation in the data over time. The automated and standardized data pipeline can also easily be applied to other health topics or other surveys and survey types. It is highly suitable as a data processing tool for the efficient continuous health surveillance required in fast-moving times of crisis such as the Covid-19 pandemic.de
dc.languageende
dc.subject.ddcSozialwissenschaften, Soziologiede
dc.subject.ddcSocial sciences, sociology, anthropologyen
dc.subject.ddcPsychologiede
dc.subject.ddcPsychologyen
dc.subject.otherCorona; COVID-19; Coronavirus; surveillance; smoothing; prediction; spline; Mikrozenszus 2018de
dc.titleDevelopment of a prototype for high-frequency mental health surveillance in Germany: data infrastructure and statistical methodsde
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.source.journalFrontiers in Public Health
dc.source.volume11de
dc.publisher.countryCHEde
dc.subject.classozGesundheitspolitikde
dc.subject.classozHealth Policyen
dc.subject.classozpsychische Störungen, Behandlung und Präventionde
dc.subject.classozPsychological Disorders, Mental Health Treatment and Preventionen
dc.subject.thesozpsychische Gesundheitde
dc.subject.thesozmental healthen
dc.subject.thesozpsychische Faktorende
dc.subject.thesozpsychological factorsen
dc.subject.thesozMentalitätde
dc.subject.thesozmentalityen
dc.subject.thesozIndikatorde
dc.subject.thesozindicatoren
dc.subject.thesozöffentliches Gesundheitswesende
dc.subject.thesozpublic health care delivery systemen
dc.subject.thesozZeitreihede
dc.subject.thesoztime seriesen
dc.subject.thesozBundesrepublik Deutschlandde
dc.subject.thesozFederal Republic of Germanyen
dc.subject.thesozMikrozensusde
dc.subject.thesozmicrocensusen
dc.subject.thesozTrendde
dc.subject.thesoztrenden
dc.subject.thesozAutomatisierungde
dc.subject.thesozautomationen
dc.subject.thesozObservationde
dc.subject.thesozsurveillanceen
dc.subject.thesozProphylaxede
dc.subject.thesozprophylaxisen
dc.identifier.urnurn:nbn:de:0168-ssoar-102985-7
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
ssoar.contributor.institutionFDBde
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10055619
internal.identifier.thesoz10042010
internal.identifier.thesoz10052135
internal.identifier.thesoz10047129
internal.identifier.thesoz10045509
internal.identifier.thesoz10054019
internal.identifier.thesoz10037571
internal.identifier.thesoz10052284
internal.identifier.thesoz10042413
internal.identifier.thesoz10037519
internal.identifier.thesoz10053508
internal.identifier.thesoz10044417
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
dc.source.pageinfo1-14de
internal.identifier.classoz11006
internal.identifier.classoz10708
internal.identifier.journal1971
internal.identifier.document32
internal.identifier.ddc300
internal.identifier.ddc150
dc.identifier.doihttps://doi.org/10.3389/fpubh.2023.1208515de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
internal.pdf.validfalse
internal.pdf.wellformedtrue
internal.pdf.encryptedfalse


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record