dc.contributor.author | Urban, Julian | de |
dc.contributor.author | Scherrer, Vsevolod | de |
dc.contributor.author | Strobel, Anja | de |
dc.contributor.author | Preckel, Franzis | de |
dc.date.accessioned | 2025-05-28T08:11:09Z | |
dc.date.available | 2025-05-28T08:11:09Z | |
dc.date.issued | 2025 | de |
dc.identifier.issn | 1552-3489 | de |
dc.identifier.uri | https://www.ssoar.info/ssoar/handle/document/102672 | |
dc.description.abstract | Norming of psychological tests is decisive for test score interpretation. However, conventional norming based on subgroups results either in biases or require very large samples to gather precise norms. Continuous norming methods, namely inferential, semi-parametric, and (simplified) parametric norming, propose to solve those issues. This article provides a systematic review of continuous norming. The review includes 121 publications with overall 189 studies. The main findings indicate that most studies used simplified parametric norming, not all studies considered essential distributional assumptions, and the evidence comparing different norming methods is inconclusive. In a real data example, using the standardization sample of the Need for Cognition-KIDS scale, we compared the precision of conventional, semi-parametric, and parametric norms. A hierarchy in terms of precision emerged with conventional norms being least precise, followed by semi-parametric norms, and parametric norms being most precise. We discuss these findings by comparing our findings and methods to previous studies. | de |
dc.language | en | de |
dc.subject.ddc | Sozialwissenschaften, Soziologie | de |
dc.subject.ddc | Social sciences, sociology, anthropology | en |
dc.subject.other | GAMLSS; cNORM; continuous norming; need for cognition; norm generation; regression-based norming; systematic review | de |
dc.title | Continuous Norming Approaches: A Systematic Review and Real Data Example | de |
dc.description.review | begutachtet (peer reviewed) | de |
dc.description.review | peer reviewed | en |
dc.identifier.url | localfile:/var/local/dda-files/prod/crawlerfiles/d9cec632c6174bd2bac72cb5beeb3dd4/d9cec632c6174bd2bac72cb5beeb3dd4.pdf | de |
dc.source.journal | Assessment | |
dc.source.volume | 32 | de |
dc.publisher.country | GBR | de |
dc.source.issue | 5 | de |
dc.subject.classoz | Erhebungstechniken und Analysetechniken der Sozialwissenschaften | de |
dc.subject.classoz | Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods | en |
dc.subject.thesoz | Test | de |
dc.subject.thesoz | test | en |
dc.subject.thesoz | Normierung | de |
dc.subject.thesoz | standardization (techn.) | en |
dc.identifier.urn | urn:nbn:de:0168-ssoar-102672-3 | |
dc.rights.licence | Creative Commons - Namensnennung 4.0 | de |
dc.rights.licence | Creative Commons - Attribution 4.0 | en |
ssoar.contributor.institution | GESIS | de |
internal.status | formal und inhaltlich fertig erschlossen | de |
internal.identifier.thesoz | 10037953 | |
internal.identifier.thesoz | 10053364 | |
dc.type.stock | article | de |
dc.type.document | Zeitschriftenartikel | de |
dc.type.document | journal article | en |
dc.source.pageinfo | 654-674 | de |
internal.identifier.classoz | 10105 | |
internal.identifier.journal | 766 | |
internal.identifier.document | 32 | |
internal.identifier.ddc | 300 | |
dc.identifier.doi | https://doi.org/10.1177/10731911241260545 | de |
dc.description.pubstatus | Veröffentlichungsversion | de |
dc.description.pubstatus | Published Version | en |
internal.identifier.licence | 16 | |
internal.identifier.pubstatus | 1 | |
internal.identifier.review | 1 | |
ssoar.wgl.collection | true | de |
internal.dda.reference | crawler-deepgreen-1276@@d9cec632c6174bd2bac72cb5beeb3dd4 | |