Zur Kurzanzeige

[Zeitschriftenartikel]

dc.contributor.authorUrban, Juliande
dc.contributor.authorScherrer, Vsevolodde
dc.contributor.authorStrobel, Anjade
dc.contributor.authorPreckel, Franzisde
dc.date.accessioned2025-05-28T08:11:09Z
dc.date.available2025-05-28T08:11:09Z
dc.date.issued2025de
dc.identifier.issn1552-3489de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/102672
dc.description.abstractNorming of psychological tests is decisive for test score interpretation. However, conventional norming based on subgroups results either in biases or require very large samples to gather precise norms. Continuous norming methods, namely inferential, semi-parametric, and (simplified) parametric norming, propose to solve those issues. This article provides a systematic review of continuous norming. The review includes 121 publications with overall 189 studies. The main findings indicate that most studies used simplified parametric norming, not all studies considered essential distributional assumptions, and the evidence comparing different norming methods is inconclusive. In a real data example, using the standardization sample of the Need for Cognition-KIDS scale, we compared the precision of conventional, semi-parametric, and parametric norms. A hierarchy in terms of precision emerged with conventional norms being least precise, followed by semi-parametric norms, and parametric norms being most precise. We discuss these findings by comparing our findings and methods to previous studies.de
dc.languageende
dc.subject.ddcSozialwissenschaften, Soziologiede
dc.subject.ddcSocial sciences, sociology, anthropologyen
dc.subject.otherGAMLSS; cNORM; continuous norming; need for cognition; norm generation; regression-based norming; systematic reviewde
dc.titleContinuous Norming Approaches: A Systematic Review and Real Data Examplede
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.identifier.urllocalfile:/var/local/dda-files/prod/crawlerfiles/d9cec632c6174bd2bac72cb5beeb3dd4/d9cec632c6174bd2bac72cb5beeb3dd4.pdfde
dc.source.journalAssessment
dc.source.volume32de
dc.publisher.countryGBRde
dc.source.issue5de
dc.subject.classozErhebungstechniken und Analysetechniken der Sozialwissenschaftende
dc.subject.classozMethods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methodsen
dc.subject.thesozTestde
dc.subject.thesoztesten
dc.subject.thesozNormierungde
dc.subject.thesozstandardization (techn.)en
dc.identifier.urnurn:nbn:de:0168-ssoar-102672-3
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
ssoar.contributor.institutionGESISde
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10037953
internal.identifier.thesoz10053364
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
dc.source.pageinfo654-674de
internal.identifier.classoz10105
internal.identifier.journal766
internal.identifier.document32
internal.identifier.ddc300
dc.identifier.doihttps://doi.org/10.1177/10731911241260545de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
ssoar.wgl.collectiontruede
internal.dda.referencecrawler-deepgreen-1276@@d9cec632c6174bd2bac72cb5beeb3dd4


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige