Show simple item record

[journal article]

dc.contributor.authorSadigova, Nigarde
dc.date.accessioned2025-04-28T10:00:10Z
dc.date.available2025-04-28T10:00:10Z
dc.date.issued2025de
dc.identifier.issn2413-9009de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/101900
dc.description.abstractThe rapid expansion of scientific knowledge and digital content in the 21st century has significantly increased the demand for accurate, efficient, and scalable terminology development processes. Term formation - the creation, extraction, validation, and standardisation of specialised vocabulary - has traditionally been a manual endeavour by linguists, terminologists, and subject matter experts. However, with the growing complexity and volume of information, traditional methods are no longer sufficient to keep pace. Recent advancements in Artificial Intelligence (AI), particularly in Natural Language Processing (NLP), machine learning, and knowledge representation, are transforming terminology science. AI-powered systems can process vast multilingual and domain-specific corpora to automatically identify candidate terms, evaluate their relevance using semantic and statistical criteria, and suggest standardised forms and multilingual equivalents. These technologies support the automation of term extraction, filtering, clustering of semantic variants, and alignment across languages and disciplines. This article explores the core applications of AI in term formation, including automatic term extraction, term validation and filtering, semantic clustering, and standardisation. It also addresses integrating AI tools in multilingual environments and constructing terminological resources compatible with ontologies and knowledge graphs. While AI introduces speed, scalability, and contextual awareness to terminology management, it also raises challenges related to accuracy, cultural and linguistic sensitivity, and algorithmic bias. The study concludes that a hybrid model - combining AI's computational capabilities with expert human judgment - offers the most promising path toward creating dynamic, inclusive, and globally coherent terminological systems.de
dc.languageende
dc.subject.ddcLiteratur, Rhetorik, Literaturwissenschaftde
dc.subject.ddcLiterature, rhetoric and criticismen
dc.subject.otherterm formation; terminology management; machine learningde
dc.titleThe Role of Artificial Intelligence in Modern-Term Formationde
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.identifier.urlhttps://pathofscience.org/index.php/ps/article/view/3472/1678de
dc.source.journalPath of Science
dc.source.volume11de
dc.publisher.countryMISCde
dc.source.issue3de
dc.subject.classozLiteraturwissenschaft, Sprachwissenschaft, Linguistikde
dc.subject.classozScience of Literature, Linguisticsen
dc.subject.thesozkünstliche Intelligenzde
dc.subject.thesozartificial intelligenceen
dc.subject.thesozAutomatisierungde
dc.subject.thesozautomationen
dc.subject.thesozFachsprachede
dc.subject.thesoztechnical languageen
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10043031
internal.identifier.thesoz10037519
internal.identifier.thesoz10043097
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
dc.source.pageinfo7006-7012de
internal.identifier.classoz30200
internal.identifier.journal1570
internal.identifier.document32
internal.identifier.ddc800
dc.identifier.doihttps://doi.org/10.22178/pos.115-26de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
internal.dda.referencehttps://pathofscience.org/index.php/index/oai/@@oai:ojs.pathofscience.org:article/3472
ssoar.urn.registrationfalsede


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record