Show simple item record

[journal article]

dc.contributor.authorOh, Yu Wonde
dc.contributor.authorPark, Chong Hyunde
dc.date.accessioned2025-04-28T09:03:28Z
dc.date.available2025-04-28T09:03:28Z
dc.date.issued2025de
dc.identifier.issn2183-2439de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/101891
dc.description.abstractAs online communication data continues to grow, manual content analysis, which is frequently employed in media studies within the social sciences, faces challenges in terms of scalability, efficiency, and coding scope. Automated machine learning can address these issues, but it often functions as a black box, offering little insight into the features driving its predictions. This lack of interpretability limits its application in advancing social science communication research and fostering practical outcomes. Here, explainable AI offers a solution that balances high prediction accuracy with interpretability. However, its adoption in social science communication studies remains limited. This study illustrates tensor decomposition - specifically, PARAFAC2 - for media scholars as an interpretable machine learning method for analyzing high-dimensional communication data. By transforming complex datasets into simpler components, tensor decomposition reveals the nuanced relationships among linguistic features. Using a labeled spam review dataset as an illustrative example, this study demonstrates how the proposed approach uncovers patterns overlooked by traditional methods and enhances insights into language use. This framework bridges the gap between accuracy and explainability, offering a robust tool for future social science communication research.de
dc.languageende
dc.subject.ddcPublizistische Medien, Journalismus,Verlagswesende
dc.subject.ddcNews media, journalism, publishingen
dc.subject.otherautomated content analysis; explainable AI; machine learning; PARAFAC2; tensor decompositionde
dc.titleUnmasking Machine Learning With Tensor Decomposition: An Illustrative Example for Media and Communication Researchersde
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.identifier.urlhttps://www.cogitatiopress.com/mediaandcommunication/article/view/9623/4338de
dc.source.journalMedia and Communication
dc.source.volume13de
dc.publisher.countryPRTde
dc.subject.classozAllgemeines, spezielle Theorien und Schulen, Methoden, Entwicklung und Geschichte der Kommunikationswissenschaftende
dc.subject.classozBasic Research, General Concepts and History of the Science of Communicationen
dc.subject.thesozkünstliche Intelligenzde
dc.subject.thesozartificial intelligenceen
dc.subject.thesozInhaltsanalysede
dc.subject.thesozcontent analysisen
dc.subject.thesozKommunikationsforschungde
dc.subject.thesozcommunication researchen
dc.subject.thesozAutomatisierungde
dc.subject.thesozautomationen
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
internal.statusnoch nicht fertig erschlossende
internal.identifier.thesoz10043031
internal.identifier.thesoz10035488
internal.identifier.thesoz10049324
internal.identifier.thesoz10037519
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
internal.identifier.classoz10801
internal.identifier.journal793
internal.identifier.document32
internal.identifier.ddc070
dc.source.issuetopicAI, Media, and People: The Changing Landscape of User Experiences and Behaviorsde
dc.identifier.doihttps://doi.org/10.17645/mac.9623de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
internal.dda.referencehttps://www.cogitatiopress.com/mediaandcommunication/oai/@@oai:ojs.cogitatiopress.com:article/9623
ssoar.urn.registrationfalsede


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record