Show simple item record

[working paper]

dc.contributor.authorFörster, Martinde
dc.date.accessioned2025-04-01T12:41:36Z
dc.date.available2025-04-01T12:41:36Z
dc.date.issued2025de
dc.identifier.issn2366-5041de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/101176
dc.description.abstractIf the task is to conduct a regression analysis in order to examine the statistical associations between variables, many scientists think, of course, of OLS first. And it makes perfect sense: it’s probably the first regression technique you'll encounter - it's part of the basic repertoire of statistical analysis. Furthermore, OLS results are very informative. However, OLS needs a bunch of assumptions regarding the data at hand to be satisfied (Wooldridge 2010). If these assumptions are not met, results from OLS can be unstable, biased, or misleading. It is important to note that the assumptions of OLS are seldom fully met. Hence, to get stable results, we must apply robust regression techniques - that is, techniques which do not need some of the assumptions to be satisfied. I will discuss two scenarios where alternative regression techniques provide more robust results compared to OLS. Both are about handling certain characteristics of the dependent variable. First, we consider a scenario where the measurement level of the dependent variable is ordinal. In the second scenario, the outcome is metric, but its distribution is strongly skewed. Finally, it is outlined how robust inference statistics can be achieved for both scenarios. The techniques discussed are not only relevant but particularly so in the context of extended replications. Since replications aim to assess the stability of results, the application of alternative techniques aids in identifying methodological artifacts.de
dc.languageende
dc.subject.ddcSozialwissenschaften, Soziologiede
dc.subject.ddcSocial sciences, sociology, anthropologyen
dc.titleTechnical notes: Robust regression for at least ordinal outcomesde
dc.description.reviewnicht begutachtetde
dc.description.reviewnot revieweden
dc.source.volume4de
dc.publisher.countryDEUde
dc.source.seriesSchriftenreihe für erweiterte Replikationen, Crowdsourcing und empirische Theorieüberprüfung
dc.subject.classozForschungsarten der Sozialforschungde
dc.subject.classozResearch Designen
dc.identifier.urnurn:nbn:de:0168-ssoar-101176-4
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
internal.statusformal und inhaltlich fertig erschlossende
dc.type.stockmonographde
dc.type.documentArbeitspapierde
dc.type.documentworking paperen
dc.source.pageinfo8de
internal.identifier.classoz10104
internal.identifier.document3
internal.identifier.ddc300
dc.identifier.doihttps://doi.org/10.17605/OSF.IO/4HWXUde
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review3
internal.identifier.series957
internal.pdf.validfalse
internal.pdf.wellformedtrue
internal.pdf.encryptedfalse


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record