Show simple item record

[journal article]

dc.contributor.authorMoretti, Angelode
dc.contributor.authorShlomo, Nataliede
dc.date.accessioned2025-03-12T11:38:29Z
dc.date.available2025-03-12T11:38:29Z
dc.date.issued2023de
dc.identifier.issn2325-0992de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/100682
dc.description.abstractThere is growing interest within National Statistical Institutes in combining available datasets containing information on a large variety of social domains. Statistical matching approaches can be used to integrate data sources through a common set of variables where each dataset contains different units that belong to the same target population. However, a common problem is related to the assumption of conditional independence among variables observed in different data sources. In this context, an auxiliary dataset containing all the variables jointly can be used to improve the statistical matching by providing information on the correlation structure of variables observed across different datasets. We propose modifying the prediction models from the auxiliary dataset through a calibration step and show that we can improve the outcome of statistical matching in a variety of settings. We evaluate the proposed approach via simulation and an application based on the European Union Statistics for Income and Living Conditions and Living Costs and Food Survey for the United Kingdom.de
dc.languageende
dc.subject.ddcSozialwissenschaften, Soziologiede
dc.subject.ddcSocial sciences, sociology, anthropologyen
dc.subject.otherdata fusion; data integration; distance hot deck; model calibration; predictive mean matching; EU-SILC 2018de
dc.titleImproving Statistical Matching when Auxiliary Information is Availablede
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.source.journalJournal of Survey Statistics and Methodology
dc.source.volume11de
dc.publisher.countryGBRde
dc.source.issue3de
dc.subject.classozErhebungstechniken und Analysetechniken der Sozialwissenschaftende
dc.subject.classozMethods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methodsen
dc.subject.thesozDatende
dc.subject.thesozdataen
dc.subject.thesozModellde
dc.subject.thesozmodelen
dc.subject.thesozStatistikde
dc.subject.thesozstatisticsen
dc.subject.thesozInformationde
dc.subject.thesozinformationen
dc.subject.thesozEUde
dc.subject.thesozEUen
dc.subject.thesozGroßbritanniende
dc.subject.thesozGreat Britainen
dc.identifier.urnurn:nbn:de:0168-ssoar-100682-8
dc.rights.licenceCreative Commons - Namensnennung, Nicht-kommerz. 4.0de
dc.rights.licenceCreative Commons - Attribution-NonCommercial 4.0en
ssoar.contributor.institutionFDBde
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10034708
internal.identifier.thesoz10036422
internal.identifier.thesoz10035432
internal.identifier.thesoz10036968
internal.identifier.thesoz10041441
internal.identifier.thesoz10042102
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
dc.source.pageinfo619-642de
internal.identifier.classoz10105
internal.identifier.journal1883
internal.identifier.document32
internal.identifier.ddc300
dc.identifier.doihttps://doi.org/10.1093/jssam/smac038de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence32
internal.identifier.pubstatus1
internal.identifier.review1
internal.pdf.validfalse
internal.pdf.wellformedtrue
internal.pdf.encryptedfalse


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record