SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.18148/srm/2017.v11i1.6557

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Non-unique Records in International Survey Projects: The Need for Extending Data Quality Control

[journal article]

Slomczynski, Kazimierz Maciek
Powalko, Przemek
Krauze, Tadeusz

Abstract

"For a given survey data file we define a non-unique record, NUR, as a sequence of all values in a given case (record), which is identical to that of another case in the same dataset. We analyzed 1,721 national surveys in 22 international projects, covering 142 countries and 2.3 million responden... view more

"For a given survey data file we define a non-unique record, NUR, as a sequence of all values in a given case (record), which is identical to that of another case in the same dataset. We analyzed 1,721 national surveys in 22 international projects, covering 142 countries and 2.3 million respondents, and found a total of 5,893 NURs concentrated in 162 national surveys, in 17 projects and 80 countries. We show that the probability of the occurrence of any NUR in an average survey sample is exceedingly small, and although NURs constitute a minor fraction of all records, it is unlikely that they are solely the result of random chance. We describe how NURs are distributed across projects, countries, time, modes of data collection, and sampling methods. We demonstrate that NURs diminish data quality and potentially have undesirable effects on the results of statistical analyses. Identifying NURs allows researchers to examine the consequences of their existence in data files. We argue that such records should be flagged in all publically available data archives. We provide a complete list of NURs for all analyzed national surveys." (author's abstract)... view less

Keywords
survey research; international comparison; data capture; data quality

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
Survey Data Quality; Duplicate Records; Rare Events; Non-Random Errors in Survey Data

Document language
English

Publication Year
2017

Page/Pages
p. 1-16

Journal
Survey Research Methods, 11 (2017) 1

ISSN
1864-3361

Status
Published Version; peer reviewed

Licence
Deposit Licence - No Redistribution, No Modifications


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.