SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.18148/srm/2017.v11i1.6557

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Non-unique Records in International Survey Projects: The Need for Extending Data Quality Control

[Zeitschriftenartikel]

Slomczynski, Kazimierz Maciek
Powalko, Przemek
Krauze, Tadeusz

Abstract

"For a given survey data file we define a non-unique record, NUR, as a sequence of all values in a given case (record), which is identical to that of another case in the same dataset. We analyzed 1,721 national surveys in 22 international projects, covering 142 countries and 2.3 million responden... mehr

"For a given survey data file we define a non-unique record, NUR, as a sequence of all values in a given case (record), which is identical to that of another case in the same dataset. We analyzed 1,721 national surveys in 22 international projects, covering 142 countries and 2.3 million respondents, and found a total of 5,893 NURs concentrated in 162 national surveys, in 17 projects and 80 countries. We show that the probability of the occurrence of any NUR in an average survey sample is exceedingly small, and although NURs constitute a minor fraction of all records, it is unlikely that they are solely the result of random chance. We describe how NURs are distributed across projects, countries, time, modes of data collection, and sampling methods. We demonstrate that NURs diminish data quality and potentially have undesirable effects on the results of statistical analyses. Identifying NURs allows researchers to examine the consequences of their existence in data files. We argue that such records should be flagged in all publically available data archives. We provide a complete list of NURs for all analyzed national surveys." (author's abstract)... weniger

Thesaurusschlagwörter
Umfrageforschung; internationaler Vergleich; Datengewinnung; Datenqualität

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
Survey Data Quality; Duplicate Records; Rare Events; Non-Random Errors in Survey Data

Sprache Dokument
Englisch

Publikationsjahr
2017

Seitenangabe
S. 1-16

Zeitschriftentitel
Survey Research Methods, 11 (2017) 1

ISSN
1864-3361

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Deposit Licence - Keine Weiterverbreitung, keine Bearbeitung


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.