SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(316.2 KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-257841

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Ignoramus, ignorabimus? On uncertainty in ecological inference

[Zeitschriftenartikel]

Elff, Martin
Gschwend, Thomas
Johnston, Ron

Abstract

"Models of ecological inference (EI) have to rely on crucial assumptions about the individual-level data-generating process, which cannot be tested because of the unavailability of these data. However, these assumptions may be violated by the unknown data and this may lead to serious bias of estimat... mehr

"Models of ecological inference (EI) have to rely on crucial assumptions about the individual-level data-generating process, which cannot be tested because of the unavailability of these data. However, these assumptions may be violated by the unknown data and this may lead to serious bias of estimates and predictions. The amount of bias, however, cannot be assessed without information that is unavailable in typical applications of EI. We therefore construct a model that at least approximately accounts for the additional, nonsampling error that may result from possible bias incurred by an EI procedure, a model that builds on the Principle of Maximum Entropy. By means of a systematic simulation experiment, we examine the performance of prediction intervals based on this second-stage Maximum Entropy model. The results of this simulation study suggest that these prediction intervals are at least approximately correct if all possible configurations of the unknown data are taken into account. Finally, we apply our method to a real-world example, where we actually know the true values and are able to assess the performance of our method: the prediction of district-level percentages of split-ticket voting in the 1996 General Election of New Zealand. It turns out that in 95.5% of the New Zealand voting districts, the actual percentage of split-ticket votes lies inside the 95% prediction intervals constructed by our method." (author's abstract)... weniger

Thesaurusschlagwörter
Aggregatdaten; Schätzung; Fehler; Aggregatdatenanalyse; Modell; Methode

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
Ökologische Inferenz

Sprache Dokument
Englisch

Publikationsjahr
2008

Seitenangabe
S. 70-92

Zeitschriftentitel
Political Analysis, 16 (2008) 1

DOI
https://doi.org/10.1093/pan/mpm030

Lizenz
Deposit Licence - Keine Weiterverbreitung, keine Bearbeitung

DatenlieferantDieser Metadatensatz wurde vom Sondersammelgebiet Sozialwissenschaften (USB Köln) erstellt.


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.