SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(316.2Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-257841

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Ignoramus, ignorabimus? On uncertainty in ecological inference

[journal article]

Elff, Martin
Gschwend, Thomas
Johnston, Ron

Abstract

"Models of ecological inference (EI) have to rely on crucial assumptions about the individual-level data-generating process, which cannot be tested because of the unavailability of these data. However, these assumptions may be violated by the unknown data and this may lead to serious bias of estimat... view more

"Models of ecological inference (EI) have to rely on crucial assumptions about the individual-level data-generating process, which cannot be tested because of the unavailability of these data. However, these assumptions may be violated by the unknown data and this may lead to serious bias of estimates and predictions. The amount of bias, however, cannot be assessed without information that is unavailable in typical applications of EI. We therefore construct a model that at least approximately accounts for the additional, nonsampling error that may result from possible bias incurred by an EI procedure, a model that builds on the Principle of Maximum Entropy. By means of a systematic simulation experiment, we examine the performance of prediction intervals based on this second-stage Maximum Entropy model. The results of this simulation study suggest that these prediction intervals are at least approximately correct if all possible configurations of the unknown data are taken into account. Finally, we apply our method to a real-world example, where we actually know the true values and are able to assess the performance of our method: the prediction of district-level percentages of split-ticket voting in the 1996 General Election of New Zealand. It turns out that in 95.5% of the New Zealand voting districts, the actual percentage of split-ticket votes lies inside the 95% prediction intervals constructed by our method." (author's abstract)... view less

Keywords
aggregate data; model; error; estimation; aggregate data analysis; method

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
Ökologische Inferenz

Document language
English

Publication Year
2008

Page/Pages
p. 70-92

Journal
Political Analysis, 16 (2008) 1

DOI
https://doi.org/10.1093/pan/mpm030

Licence
Deposit Licence - No Redistribution, No Modifications

Data providerThis metadata entry was indexed by the Special Subject Collection Social Sciences, USB Cologne


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.