Export für Ihre Literaturverwaltung

Übernahme per Copy & Paste



Bookmark and Share

Sequential conditional correlations: Inference and evaluation


Palandri, Alessandro


Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):http://nbn-resolving.de/urn:nbn:de:0168-ssoar-251154

Weitere Angaben:
Abstract This paper presents a new approach to the modeling of conditional correlation matrices within the multivariate GARCH framework. The procedure, which consists in breaking the matrix into the product of a sequence of matrices with desirable characteristics, in effect converts a highly dimensional and intractable optimization problem into a series of simple and feasible estimations. This in turn allows for richer parameterizations and complex functional forms for the single components. An empirical application involving the conditional second moments of 69 selected stocks from the NASDAQ100 shows how the new procedure results in strikingly accurate measures of the conditional correlations.
Klassifikation Volkswirtschaftslehre; Wirtschaftsstatistik, Ökonometrie, Wirtschaftsinformatik
Freie Schlagwörter C51; C52; C61; G1; Multivariate GARCH; High Dimensional GARCH models; Conditional correlations; Sequential estimation
Sprache Dokument Englisch
Publikationsjahr 2009
Seitenangabe S. 122-132
Zeitschriftentitel Journal of Econometrics, 153 (2009) 2
DOI http://dx.doi.org/10.1016/j.jeconom.2009.05.002
Status Postprint; begutachtet (peer reviewed)
Lizenz PEER Licence Agreement (applicable only to documents from PEER project)