SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(8.899Mb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-32983

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Beschreibende Zeitreihenanalyse: Komponentenzerlegung mit Hilfe gleitender Mittelwerte

Descriptive time series analysis: component analysis by means of sliding average values
[journal article]

Thome, Helmut

Abstract

Zeitreihen entstehen, wenn eine Merkmalsdimension (Variable) bei einer identischen Untersuchungseinheit (Personen, Gruppen, Organisationen, Regionen, Nationen) in gleichbleibenden Abständen wiederholt gemessen werden. Sozialwissenschaftliche Zeitreihen weisen in vielen Fällen einen Trendverlauf und/... view more

Zeitreihen entstehen, wenn eine Merkmalsdimension (Variable) bei einer identischen Untersuchungseinheit (Personen, Gruppen, Organisationen, Regionen, Nationen) in gleichbleibenden Abständen wiederholt gemessen werden. Sozialwissenschaftliche Zeitreihen weisen in vielen Fällen einen Trendverlauf und/oder saisonale Schwankungen auf; z.B. Arbeitslosenzahlen, deren Anstieg oder Rückgang als lediglich 'saisonbedingt' oder als Zeichen einer verbesserten oder verschlechterten Wirtschaftslage gedeutet werden. Der vorliegende Beitrag diskutiert das Verfahren der 'gleitenden Mittelwerte' und expliziert es an einem Regressionsmodell. Die gesamte Methode wird durch eine Anwendung auf die Arbeitslosenzahlen der BRD von 1972 bis 1982 demonstriert. (pmb)... view less


'In the 'classical' approach, time series data are treated as a composite consisting of - in the simplest case - a trend, a seasonal, and an irregular component. These components may be combined additively or multiplicatively. 'Moving averages' is a technique for extracting these parts out of the ob... view more

'In the 'classical' approach, time series data are treated as a composite consisting of - in the simplest case - a trend, a seasonal, and an irregular component. These components may be combined additively or multiplicatively. 'Moving averages' is a technique for extracting these parts out of the observed series. It can be explicated in terms of a regression model. The method is demonstrated in an application to the German unemployment rate from 1970 to 1982. Several other techniques helpful in time series analysis, like Box-Cox transformations and 'differencing', are also discussed in this paper.' (author's abstract)... view less

Keywords
statistical analysis; methodology; model construction; analysis; time series; empirical social research; Federal Republic of Germany; unemployment

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Method
empirical; development of methods; basic research

Document language
German

Publication Year
1992

Page/Pages
p. 63-105

Journal
Historical Social Research, 17 (1992) 3

DOI
https://doi.org/10.12759/hsr.17.1992.3.63-105

ISSN
0172-6404

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.