SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(977.7 KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-67905-4

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Generating reliable tourist accommodation statistics: Bootstrapping regression model for overdispersed long-tailed data

[Zeitschriftenartikel]

Van Truong, Nguyen
Shimizu, Tetsuo
Kurihara, Takeshi
Choi, Sunkyung
Truong

Abstract

Purpose: Few studies have applied count data analysis to tourist accommodation data. This study was undertaken to investigate the characteristics and to seek for the most fitting models for population total estimation in relation to tourist accommodation data. Methods: Based on the data of 10,503 h... mehr

Purpose: Few studies have applied count data analysis to tourist accommodation data. This study was undertaken to investigate the characteristics and to seek for the most fitting models for population total estimation in relation to tourist accommodation data. Methods: Based on the data of 10,503 hotels, obtained from by a nationwide Japanese survey, the bootstrap resampling method was applied for re-randomisation of the data. Training and test sets were derived by randomly splitting each of the bootstrap samples. Six count models were fitted to the training set and validated with the test set. Bootstrap distributions for parameters of significance were used for model evaluation. Results: The outcome variable (number of guests), was found to be heterogenous, over dispersed and long-tailed, with excessive zero counts. The hurdle negative binomial and zero-inflated negative binomial models outperformed the other models. The accuracy (se) of the estimation of total guests with training sets that ranged from 5% to 85%, was from 3.7 to 0.4 respectively. Results appear little overestimated. Implications: Findings indicated that the integration of the bootstrap resampling method and count regression provide a statistical tool for generating reliable tourist accommodation statistics. The use of bootstrap would help to detect and correct the bias of the estimation.... weniger

Thesaurusschlagwörter
Tourismus; Gastgewerbe; Statistik; Japan

Klassifikation
Wirtschaftssektoren

Sprache Dokument
Englisch

Publikationsjahr
2020

Seitenangabe
S. 30-37

Zeitschriftentitel
Journal of Tourism, Heritage & Services Marketing, 6 (2020) 2

DOI
https://doi.org/10.5281/zenodo.3837608

ISSN
2529-1947

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung, Nicht kommerz., Keine Bearbeitung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.