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Summary

The potential of location-shift models to find adequate models between the proportional odds
model and the non-proportional odds model is investigated. It is demonstrated that these models
are very useful in ordinal modelling. While proportional odds models are often too simple,
non-proportional odds models are typically unnecessary complicated and seem widely dispensable.
In addition, the class of location-shift models is extended to allow for smooth effects. The additive
location-shift model contains two functions for each explanatory variable, one for the location and
one for dispersion. It is much sparser than hard-to-handle additive models with category-specific
covariate functions but more flexible than common vector generalised additive models. An R pack-
age is provided that is able to fit parametric and additive location-shift models.

Key words: Adjacent categories model; cumulative model; dispersion; location-shift model; ordinal
regression; proportional odds model.

1 Introduction

The proportional odds model, which was propagated by McCullagh (1980), is probably the
most widely used ordinal regression model. The assumption that effects of covariates are not
category-specific makes it a simply structured model that allows to interpret parameters in terms
of cumulative odds. However, in many applications, the model shows poor goodness-of-fit and
does not adequately represent the underlying probability structure. As alternatives,
non-proportional and partial proportional odds models were proposed. They allow for
category-specific effects of explanatory variables and typically show much better fit than
proportional odds models see, for example, Brant (1990), Peterson & Harrell (1990),
Cox (1995), Bender & Grouven (1998), Kim (2003), Williams (2006), Liu et al. (2009) and
Williams (2016).

A major disadvantage of non-proportional odds models is that many parameters are involved,
which makes interpretation of parameters much harder than in the simple proportional odds
model. Moreover, the space of explanatory variables can be almost empty, and estimation of pa-
rameters tends to fail in cases with a larger number of response categories. In the present paper,
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models between the proportional and non-proportional odds models are propagated. They are
sufficiently complex to provide an adequate fit but contain much less parameters than the
non-proportional odds model.
Non-proportional and proportional odds models are logistic versions of cumulative ordinal

models with category-specific or global, that is, not category-specific effects of variables,
respectively. We consider the more general class of cumulative models, which may use any
response function that is determined by a strictly increasing distribution function. In addition,
we consider the alternative class of adjacent categories models with general link functions.
For all of these models, it is essential to find an adequate representation of data that does not
involve too many parameters.
The class of models that is investigated contains a location term in the tradition of the propor-

tional odds model (and other models with global parameters), but instead of using a multitude
of category-specific parameters, the location term is complemented by a linear term that
represents variability of the response, which may be seen as dispersion or, in questionnaires,
the tendency of respondents to prefer extreme or middle categories. Parametric models of this
type were considered by Tutz and Berger (2016; 2017a).
The paper has two main objectives. It is demonstrated that location-shift versions of cumula-

tive and adjacent categories models are often adequate when modelling ordinal responses. They
can be seen as a natural extension of proportional odds models that avoid the complexity of
non-proportional odds models. Indeed, non-proportional odds type models turn out to be a fre-
quently dispensable class of models. They are unnecessarily complicated and hardly needed in
ordinal modelling. In contrast to most statistical papers, which propagate more complex model-
ling, in the first part of the paper, we plead for a simpler class of models instead of a complexer
one. In the second part of the paper, location-shift models are extended to allow for smooth ef-
fects of covariates. Extensions of additive models that include general category-specific effects
are rather hard to obtain. The proposed additive location-shift model offers a way to go beyond
the simple global effects model without adding too many functions.
In Section 2, parametric ordinal models and their location-shift versions are considered, in-

cluding details on inference. Section 3 contains illustrative simulations. In Section 4, it is dem-
onstrated that in applications, non-proportional odds models are often not needed. Traditional
additive ordinal models are briefly considered in Section 5, and the additive location-shift model
is introduced as an alternative. The section is complemented by further simulations and
applications. Available software is described in Section 6.

2 Ordinal Regression Models

2.1 Proportional and Non-Proportional Odds Models

The most widely used ordinal regression model is the proportional odds model, which is a
member of the class of cumulative models. Cumulative models can be derived from an under-
lying latent variable. Let Y∗ be an underlying latent variable for which the regression model
Y ∗ ¼ �xTβ þ ϵ holds, where ϵ is a noise variable with continuous distribution function
Fð:Þ; x is a vector of explanatory variables, and β a vector of coefficients. If one assumes
that the link between the observable categorical response Y and the latent trait is specified by
Y = r⇔ θr� 1< Y∗ ≤ θr, where�∞ ¼ θ0 < θ1 < … < θk ¼ ∞, one obtains the cumulative
model

PðY ≤ rjxÞ ¼ Fðβ0r þ xTβÞ; r ¼ 1; …; k � 1 ; (1)
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where the category-specific intercepts β0r are identical to the thresholds on the latent scale, that
is, β0r ¼ θr. If one uses the logistic distribution FðηÞ ¼ expðηÞ=ð1þ expðηÞÞ, one obtains the
proportional odds model

logitPðY ≤ rjxÞ ¼ β0r þ xTβ :

The strength of the model is that interpretation of parameters is very simple. Let γrðxÞ ¼
PðY ≤ rjxÞ=PðY > rjxÞ denote the cumulative odds, then eβj can be directly interpreted as
the odds ratio that compares the cumulative odds with value xj + 1 in the j-th variable to the odds
with value xj in the j-th variable, when all other variables are kept fixed,

eβj ¼ γrðx1; …; xj þ 1; …; xpÞ
γrðx1; …; xj ; …; xpÞ : (2)

It is important that the interpretation does not depend on the category, eβj is the same for all
odds γr; r ¼ 1; …; k � 1. The independence of parameters on categories holds for the whole
class of cumulative models (1) because they share the stochastic ordering property, which
means that for two sets of explanatory variables x and ~x the term

F�1ðPðY ≤ rjxÞÞ � F�1ðPðY ≤ rj~xÞÞ ¼ ðx � ~xÞTγ ;

does not depend on the category r.
Early versions of the cumulative logistic model were given by Snell (1964), Walker &

Duncan (1967) and Williams & Grizzle (1972). More general cumulative models were consid-
ered, among others, by Genter & Farewell (1985), Armstrong & Sloan (1989), Ananth &
Kleinbaum (1997) and Steadman & Weissfeld (1998). Campbell & Donner (1989) and
Rudolfer et al. (1995) investigated their use in prediction, and more recently, robust estimators
have been proposed by Iannario et al. (2017).

The problem with cumulative models of the form (1) is that they often do not fit the data well,
which calls for more complicated models. A class of models that has been considered in the lit-
erature is the cumulative model with category-specific effects

PðY ≤ rjxÞ ¼ Fðβ0r þ xTβrÞ; r ¼ 1; …; k � 1 ; (3)

which uses the parameter vectors βTr ¼ ðβ1r; …; βprÞ and allows that parameters vary across
categories. Logistic models of this type are also called non-proportional odds models to distin-
guish them from the simpler versions. If β1 ¼ … ¼ βk � 1, the model simplifies to the simple
cumulative model (1).

Of course, not for all variables, the parameters have to vary over categories, which might
yield two types of variables, variables with a global effect, for which βj1 ¼ … ¼ βj; k � 1 ¼ βj
, and variables with category-specific effects, that is, βjs ≠ βjr for at least two categories s, r.
Peterson & Harrell (1990) distinguished between these two effect types when considering the
so-called partial proportional odds model. To distinguish between the effects of variables, it
is helpful to consider two distinct vectors of explanatory variables w and z. Then, the model
has the form

PðY ≤ rjx; zÞ ¼ Fðβ0r þ wTβw þ zTβzrÞ; r ¼ 1; …; k � 1 : (4)
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While the effects of w are global the effects of z are category-specific. If no z-variables are
included, one obtains the proportional odds model, if no w-variables are present, one obtains
the general model with category-specific effects (3) (with renamed variables). The interpretation
of the effects of w-variables is the same as in the proportional odds model, whereas interpreta-
tion of the effects of z-variables is harder and has to refer to specific response categories.
Partial proportional odds models have been investigated, for example, by Brant (1990),

Peterson & Harrell (1990), Cox (1995), Bender & Grouven (1998), Kim (2003) and Liu
et al. (2009). In particular, tests are provided that can distinguish between variables with global
and category-specific effects. In sociology, they are also referred to as generalised ordered logit
models (Williams, 2006; 2016).
The general model with category-specific effects is attractive because it usually provides a

better fit to the data. In addition, if effects vary strongly across categories, one might miss some
effects that show only if one allows for category-specific effects, see, for example, the retinop-
athy study given in Tutz (2012), Example 9.1, p. 251. However, the whole class of models has
some serious disadvantages. One is that one has many parameters, which are much harder to
interpret. More seriously, the possible values of explanatory variables can be strongly restricted
because it is postulated that β01 þ xTβ1 ≤ … ≤ β0; k � 1 þ xTβk � 1 for all values x. Even if esti-
mates exist, in future observations with more extreme values in the explanatory variables, the
estimated probabilities can be negative. For problems with the model, see also Walker (2016)
who even concludes that it is impossible to generalise the cumulative class of ordered regression
models in ways consistent with the spirit of generalised cumulative regression models.

2.2 Cumulative Location-Shift Models

An alternative extension of the non-proportional odds model was proposed by Tutz &
Berger (2017a). They assume that variables may change the thresholds of the underlying latent
trait. Then, thresholds β0r in the proportional odds model are replaced by β0r þ ðk=2 � rÞzTα,
where z denotes a vector of covariates, possibly containing components of x. The replacement
yields the so-called location-shift model, which is given in closed form by

PðY ≤ rjxÞ ¼ Fðβ0r þ xTβ þ ðr � k=2ÞzTαÞ; r ¼ 1; …; k � 1 : (5)

It contains the familiar location term xTβ, which models the location on the latent continuum
and therefore the tendency to low or high response categories. In addition, it contains the scaled
shifting term ðr � k=2ÞzTα , which modifies the thresholds and has a quite different
interpretation.
The term zTα determines the shifting of thresholds, whereas the scaling factor (r� k/2) is an

additional weight chosen such that the difference between thresholds are widened or shrunk by
the same amount. For illustration, let us consider the case k ¼ 6, for which the modified thresh-
olds β0r þ ðr � k=2ÞzTα have the form

In general, thresholds are widened if zTα is positive, and shrunk if it is negative. The conse-
quence is that one observes more concentration in the middle or extreme categories,
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respectively. Because more concentration in the middle means less variability, the term zTα
can also be seen as representing dispersion. For positive values, the distribution is more
concentrated, meaning smaller dispersion, whereas for negative values, one has larger
dispersion. The effect is also seen from considering the differences between adjacent
predictors,

ηr � ηr � 1 ¼ β0r � β0; r � 1 þ zTα; r ¼ 2; …; k � 1 ; (6)

where ηr ¼ β0r þ xTβ þ ðr � k=2ÞzTα is the r-th predictor. For positive values of zTα, the dif-
ference between adjacent predictors becomes greater, whereas for negative values, it becomes
smaller. Thus, α represents the tendency to middle or extreme categories linked to covariates
z, which is separated from the location effect xTβ. It can be derived that the interpretation of
the β parameters is the same as in the proportional odds model if x and z are distinct (Tutz &
Berger, 2017a).

2.3 Nested Structure of Cumulative Models

A different view of the cumulative model is obtained by seeing it as a non-proportional odds
model with specific constraints on the parameters. Let us consider the general case x ¼ z. Then,
one has

PðY ≤ rjxÞ ¼ Fðβ0r þ xT ðβ þ ðr � k=2ÞαÞÞ ¼ Fðβ0r þ xTβrÞ ;

where βr ¼ β þ ðr � k=2Þα . The model is equivalent to a category-specific model with
constraints

ðβr � βÞ=ðr � k=2Þ ¼ c; r ¼ 1; …; k � 1 ;

where β ¼ ∑ k � 1
r¼1 βr and c is a vector of constants. If the category-specific model with constraints

is assumed to hold, the vector c turns out to be α.
That means, in particular, that the location-shift model is a submodel of the model with

category-specific effects. Because the proportional odds model is a submodel of the
location-shift model, one has the nested structure

proportional odds model ⊂ location-shift model ⊂ non-proportional odds model

or, more generally,

model with global effects ⊂ location-shift model ⊂ model with category-specific effects:

Because the location-shift model is a (multivariate) generalised linear model, one can inves-
tigate if the models can be simplified by testing the sequence of nested models, see, for exam-
ple, Tutz (2012).

To clarify the relation between the partial proportional odds model and the location-shift
model, let x and β be partitioned into two subvectors, xT ¼ ðwT ; zT Þ; βT ¼ ðβwT ; βzT Þ, such
that xTβ ¼ wTβw þ zTβz. Then, one obtains for the linear predictor
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ηr ¼ β0r þ xTβ þ ðr � k=2ÞzTα ¼ β0r þ wTβw þ zTβz þ ðr � k=2ÞzTα ¼ β0r þ wTβw þ zTβzr ;

where βzr ¼ βz þ ðr � k=2Þα. Thus, the predictor is very similar to the predictor of the partial
proportional odds model (4), which has the general form ηr ¼ β0r þ wTβw þ zTβzr . However,
there is one crucial difference. The category-specific parameters in the partial proportional odds
model are not constrained whereas the parameters in the location-shift model are constrained to
have the form βzr ¼ βz þ ðr � k=2Þα. This constraint makes the location-shift model a more re-
stricted model with the advantage that the α-parameters can be interpreted as effects that repre-
sent a tendency to middle or extreme categories. Thus, the location-shift model is a submodel of
the partial proportional odds model that allows for easier interpretation of effects.
One of the disadvantages of non-constrained model versions with category-specific effects is

that the simple interpretation of parameters gets lost. One has a multitude of parameters for
which one might easily lose track. For example, if one has just 4 variables and 10 categories
(see the example in Section 4.1), the model contains 45 parameters, for each variable one has
9 parameters. In contrast, the proportional odds model contains only 13 parameters, and the im-
pact of one variable is described by just one parameter. The models propagated here are models
that are between the most general model and the model with global effects, in them the impact
of a single variable is described by just two parameters (instead of k� 1 parameters as in the
general model and one in the model with global effects).

2.4 Adjacent Categories Models

An alternative class of models for ordinal responses are adjacent categories models. In its
simple version, they assume

PðY > rjY ∈ fr; r þ 1g; xÞ ¼ Fðβ0r þ xTβÞ; r ¼ 1; …; k � 1 : (7)

where F(.) again is a strictly increasing distribution function but no ordering of intercepts has to
be postulated. The logistic version has the form

log
PðY ¼ r þ 1jxÞ
PðY ¼ rjxÞ

� �
¼ β0r þ xTβ; r ¼ 2; …; k � 1 : (8)

The interpretation of parameters is as simple as for basic cumulative models; eβj is the odds
ratio that compares the odds with value xj + 1 in the j-th variable to the odds with value xj in the
j-th variable; however, the odds are not cumulative odds but adjacent categories odds, γrðxÞ ¼
PðY ¼ r þ 1jxÞ=PðY ¼ rjxÞ.
In the same way as in the cumulative models, the linear predictor can be replaced by a pre-

dictor with category-specific parameters, that is, predictors ηr ¼ β0r þ xTβr to obtain a better
fit. The corresponding model contains many parameters, which are harder to interpret. A sparser
model is the location-shift version of the adjacent categories model

log
PðY ¼ r þ 1jxÞ
PðY ¼ rjxÞ

� �
¼ β0r þ xTβ þ ðk=2 � rÞzTα; r ¼ 1; …; k � 1 : (9)

For k ¼ 6, one obtains for the term ðk=2 � rÞzTα, which distinguishes between category r
and r + 1
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Thus, one obtains the same effects as in the cumulative location-shift model, if zTα is large
the person has a tendency to choose middle categories, if zTα is small there is a tendency to
extreme categories.

For the adjacent categories model, the same hierarchy holds as for the cumulative models.
The model with global effects is a submodel of the adjacent categories location-shift model,
which is a submodel of the general model with category-specific effects.

2.5 Inference

All the models considered in the previous sections can be embedded within the framework of
multivariate generalised linear models (GLMs). That means they have the form

gðπÞ ¼ Xδ or π ¼ hðXδÞ ;
where πT ¼ ðπ1; …; πqÞ; q ¼ k � 1, is the vector of the response probabilities with compo-
nents πr ¼ PðY ¼ rjx; zÞ; X is a design matrix constructed from the predictors x and z, δ is
the total parameter vector, g ¼ ðg1; …; gqÞ:ℝq→ℝq is a vector-valued link function and h(·)
= g(·)�1 is the response function. The components of the vector Xβ are the linear predictors
(η1,… , ηq). Details of the representation of classical cumulative and adjacent categories models
as multivariate GLMs are found in Fahrmeir & Tutz (2001) and Tutz (2012), and for the shifted
versions, see Tutz & Berger (2016) and Tutz & Berger (2017b). The representation as
multivarate GLMs allows to use all the tools that have been developed for that class of models,
including algorithms to obtain estimates and standard errors. Also testing of effects, analysis of
residuals and goodness-of-fit tests developed for GLMs can be used. Programme packages that
can be used are described in Section 6.

3 Simulation Study

To illustrate the properties of the models, we show the results of a small simulation study
when the data-generating model is known, starting with the cumulative model.

We consider an ordinal response with k ¼ 5 response categories and a normally distributed
covariate x∼N(0, 0.5). We generated data from (a) a proportional odds model with β ¼ 1, (b)
from a non-proportional odds model with parameter vector ðβ1; β2; β3; β4Þ ⊤ ¼
ð�1; 0; 1; 2Þ, (c) a non-proportional odds model with parameter vector ðβ1; β2; β3; β4Þ ⊤ ¼
ð�1; 0; 0:8; 1Þ and (d) a non-proportional odds model with parameter vector
ðβ1; β2; β3; β4Þ ⊤ ¼ ð�0:5; 0:5; �0:5; 0:5Þ . Importantly, the model in scenario (b) corre-
sponds to a cumulative location-shift model with parameters β ¼ 0:5 and α ¼ 1. In all four sce-
narios, we considered n ¼ 500 observations (100 replications) and set the category-specific
intercepts to ðβ01; β02; β03; β04Þ ⊤ ¼ ð�3; �1; 1; 3Þ.

To evaluate the performance of the models, we computed the fitted linear predictors
η̂ir; i ¼ 1; …; n; r ¼ 1; …; 4, respectively, and investigated if the models can be simplified
using likelihood ratio tests. Figure 1 shows the squared differences ðη̂ir � ηirÞ2 averaged over
observations and categories. If the proportional odds model is the data-generating model
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(Scenario a), it shows the best performance (selected in 91 replications), but the location-shift
model is close. If the location-shift model is the data-generating model (Scenario b), the propor-
tional odds model performs very poorly. If the data stem from a non-proportional odds model
with increasing parameter (Scenario c), the proportional odds model performs poorly while
the performance of the location-shift model is comparable with the fitting of the
non-proportional odds model. Only if the data come from a non-proportional odds model with
strongly varying coefficients (Scenario d), it distinctly outperforms the other models (selected
in 96 replications). It is seen that the proportional odds model is a good choice only if it really
holds. In all other cases, the performance deteriorates, in some cases very strongly. Table 1 (up-
per part) shows which models are chosen if one tests the hierarchy of models with significance
level 0.05. If the proportional odds model holds (Scenario a), the non-proportional odds model
is retained only in 5% of the cases, which corresponds to the significance level. If the
location-shift model holds, it is chosen in 87% of the cases. If the non-proportional odds model
holds but with weakly varying coefficients (Scenario c), the location-shift model is often chosen
as an acceptable approximation to the non-proportional odds model. Larger sample sizes would
be necessary to distinguish between the two models. However, if a non-proportional odds model
with distinctly varying coefficients holds, it is chosen in almost all of the cases.
In the second part, we generated data from logistic adjacent categories models with the fol-

lowing changes: as no ordering of predictors is postulated, we considered multivariable models

Figure 1. Results of the simulation study (cumulative models). The boxplots show the squared differences ðη̂ ir � ηirÞ2 av-
eraged over all 500 observations and all four categories, when fitting the proportional odds model (right), the location-shift
model (middle) and the non-proportional odds model (left). The true data-generating model is indicated in the subheadings.
Note that due to the ordering constraint of the non-proportional odds model, we restricted the range of values of x to [� 2, 2]

313Parametric and Additive Location-Shift Approaches

International Statistical Review (2022), 90, 2, 306–327
© 2022 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.

 17515823, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/insr.12484 by G

E
SIS - L

eibniz-Institut fur Sozialw
issenschaften, W

iley O
nline L

ibrary on [24/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



with five normally distributed covariates x1,… , x5∼N(0, 0.5). For each covariate, we chose the
same β-parameters as before, with the exception of Scenario (b) where we used the reversed pa-
rameter vectors ðβj1; βj2; βj3; βj4Þ ⊤ ¼ ð2; 1; 0; �1Þ; j ¼ 1; …; 5. The category-specific inter-

cepts were set to ðβ01; β02; β03; β04Þ ⊤ ¼ ð2; 2=3; �2=3; �2Þ. The results are shown in Table 1
(lower part) and Figure 2, which confirm the previous findings obtained for the cumulative class
of models.

4 Applications

To demonstrate that the location-shift model is frequently a good choice that shows satisfac-
tory goodness-of-fit while being comparably sparse in parameters, we consider several
applications.

4.1 Safety in Naples

The package CUB (Iannario et al., 2015) contains the data set relgoods, which provides re-
sults of a survey aimed at measuring the subjective extent of feeling safe in the streets. The data
were collected in the metropolitan area of Naples, Italy. Every participant was asked to assess on
a 10-point ordinal scale his/her personal score for feeling safe with large categories referring to
feeling safe. There are n ¼ 2225 observations and four variables, Age, Gender (0: male, 1:
female), Residence (1: City of Naples, 2: District of Naples, 3: Others Campania, 4: Others
Italia) and the educational degree (EduDegree; 1: compulsory school, 2: high school diploma,
3: Graduated-Bachelor degree, 4: Graduated-Master degree, 5: Post graduated).

Table 2 (upper part) shows the deviances of the fitted models and the differences for the
cumulative models. The full model with category-specific effects has 90 parameters, which
reduces to 27 parameters in the location-shift model. The difference in deviances suggests that
the full model can be simplified to the location-shift model; however, it certainly does not
simplify to the model with global effects (difference of deviances 49.32 on 9 df). That means
the location-shift model contains enough structure to explain the effect of covariates on the
response, but the simpler structure without the term ðr � k=2ÞzTα is too simple, that is, relevant
effects are missing. It is noteworthy that in this application, as in the other applications used
here, the sample size is rather large (n ¼ 2225). Typically, if sample sizes are large, one finds
more significant effects. Therefore, it is remarkable that the complex model with
category-specific effects can be simplified in spite of the large sample size.

Table 1. Results of the simulation study

Scenario Non-proportional odds Location-shift Proportional odds
model model model

Cumulative models
a 5 4 91
b 8 87 5
c 14 86 0
d 96 0 4
Adjacent categories models
a 10 3 87
b 5 95 0
c 23 77 0
d 98 1 1

Number of simulation runs in which the models have been selected when comparing the sequence of nested models using likelihood ratio

tests.
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Similar results are found when using the adjacent categories approach. In the lower part of
Table 2, the fits for logistic adjacent categories models are given. It is seen that there is no need
to use the general model with category-specific effects because the difference in deviances
between the general model and the location-shift version is not significant. However, the
location-shift model can not be reduced to the model with global effects. The fits are well
comparable with the fits obtained for the cumulative models given in Table 2. For the adjacent
categories as well as for the cumulative modelling approach, the location-shift versions turn out

Table 2. Fits of models with logistic link for safety data

Deviance df Difference in deviances df p value

Cumulative models
Non-proportional odds model 9 825.78 19 935
Location-shift model 9 899.67 19 998 73.89 63 0.1640
Proportional odds model 9 948.99 20 007 49.32 9 0.0000
Adjacent categories models
Model with category-specific effects 9 828.07 19 935
Location-shift model 9 902.43 19 998 74.36 63 0.1549
Model with global effects 9 959.00 20 007 56.57 9 0.0000

Figure 2. Results of the simulation study (adjacent categories models). The boxplots show the squared differences
ðη̂ ir � ηirÞ2 averaged over all 500 observations and all four categories, when fitting the model with global effects (right),
the location-shift model (middle) and the model with category-specific effects (left). The true data-generating model is indi-
cated in the subheadings
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to be the best compromise between goodness-of-fit and sparsity. The fits of the cumulative ver-
sions are slightly better than that of the adjacent categories location-shift version.

In the following, we briefly compare the estimates of the alternative modelling approaches.
The estimates of the proportional odds model and the cumulative logistic location-shift model
are given in Table 3. It is seen that the dispersion effects are not negligible. All variables show
rather small p values in the dispersion component, which explains the strong difference in de-
viances between the location-shift model and the simple model with global effects, which does
not account for varying dispersion. It is seen that the simple proportional odds model yields
stronger location effects than the location-shift model, which is a hint that estimates might be
biased if dispersion effects are ignored. The same pattern is found for the adjacent categories
models (not given).

Instead of showing all the parameters, we use the plotting tool provided by our R package (see
Section 6). In Figure 3, the location effects of age, gender and residence are plotted against the
dispersion effects (left: cumulative model, right: adjacent categories model). The abscissa repre-
sents the multiplicative dispersion effect on the odds eα̂, and the ordinate axis represents the mul-

tiplicative location effect eβ̂ for the variables. In addition to the point estimates, pointwise 95%
confidence intervals are included. The horizontal and vertical lengths of the stars correspond

to the confidence intervals of eα̂ and eβ̂ , respectively. Thus, the stars also show the significance
of effects. If the stars cross the line y ¼ 1, location effects have to be considered as significant,
and if they cross the line x ¼ 1, dispersion effects have to be considered as significant.

To make the models comparable, we did not use the classical representation of the
cumulative model. We used the reverse categories representation PðY ≥ rjxÞ ¼ Fðβ0r þ xTβ þ
ðk=2 � rÞzTαÞ. Then, the location effects have the same interpretation as in the adjacent cate-
gories model, large values of xTβ indicate a preference for high response categories while small
values indicate a preference for low categories. The resulting star plots for both models, the cu-
mulative and the adjacent categories model, are very similar. It is seen that people living outside

Table 3. Estimates of proportional odds model and cumulative logistic location-shift model for safety data

Proportional odds model Location-shift model

Coef SE z value p value Coef SE z value p value

Location effects
Age �0.045 0.026 �1.713 0.086 �0.041 0.026 �1.578 0.114
Gender �0.343 0.075 �4.563 0.000 �0.327 0.075 �4.343 0.000
Residence2 0.518 0.090 5.705 0.000 0.572 0.092 6.199 0.000
Residence3 0.899 0.117 7.644 0.000 0.938 0.119 7.859 0.000
Residence4 1.397 0.141 9.885 0.000 1.339 0.148 9.039 0.000
EduDegree2 �0.307 0.111 �2.748 0.006 0.274 0.112 �2.449 0.014
EduDegree3 �0.319 0.150 �2.118 0.034 0.294 0.151 �1.947 0.051
EduDegree4 �0.162 0.159 �1.021 0.307 0.112 0.160 �0.704 0.481
EduDegree5 �0.292 0.221 �1.319 0.187 �0.261 0.221 �1.177 0.239
Dispersion effects
Age �0.018 0.007 �2.442 0.014
Gender 0.045 0.022 2.039 0.041
Residence2 �0.085 0.028 �2.984 0.002
Residence3 �0.090 0.036 �2.458 0.013
Residence4 �0.155 0.042 �3.703 0.000
EduDegree2 0.099 0.030 3.297 0.000
EduDegree3 0.142 0.044 3.176 0.001
EduDegree4 0.163 0.047 3.437 0.000
EduDegree5 0.107 0.064 1.668 0.095
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of the city of Naples feel much safer (y-axis, reference category: city of Naples), effects are or-
dered and the larger the distance to the city, the safer they feel. Females and older people feel
less safe (below the line y ¼ 1). As far as concentration of responses is concerned, people living
outside the city of Naples and older people have stronger dispersion (below x ¼ 1) while fe-
males show less dispersion than men. It should be noted that age is measured in decades, oth-
erwise the age effect would be too close to zero in the star plot. Although the estimated
parameter values are quite different for the cumulative and the adjacent categories models,
the conclusions one draws are very similar, as are the goodness-of-fits. Thus, one might use ei-
ther of the two models to investigate the impact of variables. However, it is certainly warranted
to account for dispersion effects.

4.2 Nuclear Energy

The German Longitudinal Election Study (GLES) is a long-term study of the German elec-
toral process (Rattinger et al., 2014). The data consist of 2 036 observations and originate from
the pre-election survey for the German federal election in 2017 and are concerned with political
fears. In particular, the participants were asked: ‘How afraid are you due to the use of nuclear
energy?’ The answers were measured on Likert scales from 1 (not afraid at all) to 7 (very
afraid). The explanatory variables used in the model are Aged (age of the participant), Gender
(1: female; 0: male) and EastWest (1: East Germany/former GDR; 0: West Germany/former
FRG). Table 4 shows the fits of cumulative and adjacent categories models, respectively.

Table 4. Fits of models with logistic link for response fear of nuclear energy

Deviance df Difference in deviances df p value

Cumulative models
Model with category-specific effects 7 499.61 12 192
Location-shift model 7 506.36 12 204 6.75 12 0.873
Model with global effects 7 544.60 12 206 38.24 2 0.000
Adjacent categories models
Model with category-specific effects 7 500.77 12 192
Location-shift model 7 508.72 12 204 7.95 12 0.997
Model with global effects 7 545.41 12 206 36.69 2 0.000

Figure 3. Plots of ðeα̂ ; eβ̂ Þ for safety data, y-axis represents location, x-axis represents dispersion, left: cumulative
location-shift model, right: adjacent categories location-shift model
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Comparison between the full models with category-specific effects and location-shift versions
yields p values greater than 0.8. It is obvious that the location-shift versions of the models rep-
resent satisfying approximations while models with global parameters should not be used to de-
scribe the underlying response structure.

The strength of effects is seen from the stars in Figure 4, which shows parameter estimates for
the cumulative location-shift model on the left and the adjacent categories model on the
right-hand side. Again, we used the inverse order of categories in the cumulative model and
age measured in decades. It is seen that all parameters have significant location and dispersion
effects with the exception of EastWest, for which the dispersion effect is not distinctly signifi-
cant. It is seen that females and older people are more afraid of the consequences of the use of
nuclear energy while residents of the Eastern part are less afraid. Females show stronger
dispersion than men, and older people less dispersion than younger respondents.

4.3 Climate Change

Let us again consider the GLES data but now the response to the item ‘How afraid are you
due to the climate change?’. Table 5 shows the fits of cumulative and adjacent categories
models, respectively. Also for this question, the full models can be simplified to location-shift
versions of the models although the reduction is not so obvious as in the question that refers
to the use of nuclear energy.

Figure 4. Plots of ðeα̂ ; eβ̂ Þ for response fear of nuclear energy, y-axis represents location, x-axis represents dispersion, left:
cumulative location-shift model, right: adjacent categories location-shift model

Table 5. Fits of models with logistic link for response fear of climate change

Deviance df Difference in deviances df p value

Cumulative models
Model with category-specific effects 7 152.12 12 192
Location-shift model 7 170.56 12 204 18.34 12 0.1057
Model with global effects 7 178.06 12 206 7.50 2 0.0235
Adjacent categories models
Model with category-specific effects 7 153.42 12 192
Location-shift model 7 171.93 12 204 18.51 12 0.1010
Model with global effects 7 177.17 12 206 5.24 2 0.0723
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4.4 Demand for Medical Care

Deb & Trivedi (1997) analysed the demand for medical care for individuals, aged 66 and
over, based on a data set from the US National Medical Expenditure survey in 1987/88. The
data (‘NMES1988’) are available from the R package AER (Kleiber & Zeileis, 2008). The re-
sponse is the number of physician/non-physician office and hospital outpatient visits, which is
categorised with categories given by 1: zero, 2: 1–3, 3: 4–6, 4: 7–10, 5: 11–20, 6: above 20. The
available covariates include Age, the self-perceived health status (Health; 0: poor, 1: average, 2:
excellent) and the number of chronic conditions (Numchron). Because the effects vary across
gender, we consider only male, married patients (n ¼ 1388). The data set is interesting because
it is one of the applications in which cumulative models show fitting problems. The model with
category-specific effects can not be fitted at all, the cumulative location-shift model yields un-
stable estimates and no standard errors are available. In contrast, for the adjacent categories
model, maximum likelihood estimates and standard errors are obtained by regular software.
The big advantage of the adjacent categories model over the cumulative model that shows here
is that parameter values are not restricted in the adjacent categories model. Table 6 shows the
fits for the adjacent categories models. It is again seen that one might use the location-shift
model but the simple model with global parameters is not appropriate.

5 Generalised Additive Models

In the following traditional additive models for ordinal responses are considered briefly.
Then, the additive location-shift model is introduced.

5.1 Generalised Additive Models for Ordinal Responses

Parametric models as the non-proportional odds model are rather restrictive. They assume a
simple linear predictor, which might be very misleading if, for example, U-shaped effects are
present. A very flexible class of models that avoids these restrictions are generalised additive
models, which are well developed for continuous and univariate responses, see, for example,
Hastie & Tibshirani (1986), Buja et al. (1989) and Friedman & Silverman (1989).
In generalised additive models, the linear predictor xTβ is replaced by the additive term

f ð1Þðx1Þþ…þf ðpÞðxpÞ ;

where the f(j )(.) are unspecified functions. The unknown functions may be expanded in basis
functions (Eilers & Marx, 1996), smoothing splines (Gu, 2002) or thin-plate splines
(Wood, 2004); all of them have been used to model binary or continuous responses.
Ordinal models with additive predictors were considered by Yee & Wild (1996) and

Yee (2010,2015) within the framework of vector generalised additive models. For ordinal
models, one has to replace the whole predictor ηr ¼ β0r þ xTβ by

Table 6. Fits of adjacent categories models with logistic link for demand for medical care data

Deviance df Difference in deviances df p value

Non-proportional odds model 4 258.41 6 910
Location-shift model 4 282.05 6 925 23.64 15 0.0714
Proportional odds model 4 303.64 6 930 19.69 5 0.0014
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ηr ¼ β0r þ f ð1Þðx1Þþ…þf ðpÞðxpÞ ;

which contains a category-specific intercept but fixed smooth variable effects. The essential trait
is that it is assumed that the functions f(j )(xp) do not vary across categories, they are global ef-
fects. Thus, if one uses the cumulative approach, the models can be considered as additive ver-
sions of proportional odds models with accordingly simple interpretation of effects. If the j-th
variable increases by one unit from xj to xj + 1 and all other variables remain fixed, one obtains

F�1ðPðY ≤ rjx1; …; xj þ 1; …; xpÞÞ � F�1ðPðY ≤ rjx1; …; xj; …; xpÞÞ ¼
¼ f ðjÞðxj þ 1Þ � f ðjÞðxjÞ ;

which contains only the function f(j )(.). In the logistic version, the inverse distribution function
is equivalent to the cumulative log-odds, and one obtains

log
γrðx1; …; xj þ 1; …; xpÞ
γrðx1; …; xj; …; xpÞ

� �
¼ f ðjÞðxj þ 1Þ � f ðjÞðxjÞ ;

where the γrðxÞ ¼ PðY ≤ rjxÞ=PðY > rjxÞ are the cumulative odds. After transformation, one
has

γrðx1; …; xj þ 1; …; xpÞ
γrðx1; …; xj; …; xpÞ ¼ ef ðjÞðxj þ 1Þ�f ðjÞðxjÞ ;

which can be interpreted as the change in odds if the j-th variable increases by one unit from xj
to xj + 1. If the function is linear, that is, f(j )(xj) = xjβj, one obtains on the right-hand side eβj ,
which is equivalent to Equation (2). Then, the effect strength does not depend on the baseline
value xj. This is different in the general additive case, in which the change depends on the
‘starting’ value xj, which is increased by one unit. Nevertheless, the effect strength is not
affected by the values of the other covariates. Similar properties hold if one uses the adjacent
categories model with additive predictor structure.

5.2 Additive Location-Shift Models

The additive ordinal models with global effects considered in the previous section share some
problems with the parametric model with global effects. Although it is more flexible by
allowing for smooth effects, it is rather restrictive by assuming that the effects of covariates
do not depend on the category. Consequently, it might show bad goodness-of-fit. One can ex-
tend the model in the same way as linear models by allowing that the smooth functions are
category-specific. Then, one postulates

ηr ¼ β0r þ f ð1Þ; rðx1Þþ…þf ðpÞ; rðxpÞ ;

where the functions f(j ), r(.) depend on r. However, for each covariate, one has to fit k� 1 func-
tions, which can lead to a confusing number of functions if one has, for example, 10 response
categories, which is not unusual in questionnaires. Moreover, the functions are severely re-
stricted because ηr ≤ ηr + 1 has to hold for all r, which is hard to control in estimation. If it is
not accounted for, resulting estimates might yield negative probabilities.
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One can try to restrict the variation of the functions by assuming that they are varying not too
strongly across categories, see Tutz (2003), but this approach calls for complicated
regularisation methods, and still one has k� 1 functions to interpret for each explanatory
variable.
The model proposed here is an additive version of the location-shift model, which avoids the

large number of functions but typically fits much better than the simple additive model. The
additive location-shift model uses the predictor

ηr ¼ β0r þ f ð1Þðx1Þþ…þf ðpÞðxpÞþðr � k=2Þff ðSÞð1Þðz1Þþ…þf ðSÞðmÞðzmÞg ;

where f ðSÞð1Þð:Þ; …; f ðSÞðmÞð:Þ are unspecified dispersion functions. The predictor contains two types

of smooth functions, the ones in the location term f(1)(x1) +… + f(p)(xp) and the ones in the

dispersion term f ðSÞð1Þðz1Þþ…þf ðSÞðmÞðzmÞ.
In particular, when x and z are distinct, the functions have a simple interpretation. If the j-th

x-variable increases by one unit from xj to xj + 1 and all other variables remain fixed, one obtains
for the cumulative model the same property as in the simple additive model,

γrðx1; …; xj þ 1; …; xpÞ
γrðx1; …; xj; …; xpÞ ¼ ef ðjÞðxj þ 1Þ�f ðjÞðxjÞ ;

which means that the functions can be interpreted as change in (cumulative) odds ratios. For the
differences between adjacent predictors, one obtains

ηr � ηr � 1 ¼ β0r � β0; r � 1 þ ff ðSÞð1Þðz1Þþ…þf ðSÞðmÞðzmÞg :

That means that large values of f ðSÞðjÞ ð:Þ widen the distance between adjacent predictors, while

small values shrink the distance between adjacent predictors. Therefore, large values indicate
a tendency to middle categories or smaller dispersion while small values indicate a tendency
to extreme categories or strong dispersion.
As the parametric model, the additive location-shift model accounts for dispersion without

being too complex. In the general case x ¼ z, the additive location-shift model contains just
two smooth functions per variable that characterise the effect of explanatory variables on the
response, one for the location and one for the dispersion. That means one has to fit only 2p
smooth functions instead of (k� 1)p, which would be needed in the general model with
category-specific covariate functions.

For the fitting of the unknown functions f ðjÞð:Þ; f ðSÞðjÞ ð:Þ, we use an expansion in basis func-

tions. Thus, functions are approximated by

f ðjÞðxÞ ¼ ∑
M

s¼1
βjsΦsðxÞ and f ðSÞðjÞ ðzÞ ¼ ∑

M

s¼1
αjsΦsðzÞ ;

where Φ1(.),… ,ΦM(.) are basis functions. A widely used set of basis functions are B-splines
(Eilers & Marx, 1996), which are also implemented in our R package ordDisp to be described
in detail in Section 6.
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5.3 Simulation Study

We generated data from the additive adjacent categories location-shift model. Again, we
considered k ¼ 5 response categories and one normally distributed covariate x∼N(0, 0.5). As
in the adjacent categories model in Section 3, we set the category-specific intercepts to
ðβ01; β02; β03; β04Þ ⊤ ¼ ð2; 2=3; �2=3; �2Þ . The smooth functions of the location and the
dispersion term had the form

f ðxÞðxÞ ¼ 0:5 arctanðxÞ and f ðxÞðzÞS ¼ arctanðxÞ :

The models with global effects and the category-specific models were fitted by applying the
function vgam() of the R package VGAM, and the location-shift models were fitted using
ordDisp with four cubic B-splines. The squared differences ðη̂ir � ηirÞ2 from fitting the three
nested models are depicted in Figure 5. It is seen that the location-shift model on average per-
forms best, whereas the category-specific model performs worse and shows high variability.
When testing the hierarchy of models, the location-shift model is chosen in 79% of the cases,
while the category-specific model is retained in 16% of the cases. The simple model with global
effects is found to be sufficient in only 5% of the cases. The results are therefore comparable
with those in Section 3, Scenarios (b) and (c).

5.4 Safety Data

It has been shown in Section 4.1 that the parametric location-shift model provided a good
compromise between sparsity and goodness-of-fit for the response feeling safe in Naples. The
only continuous variable was age, which had p values 0.086 (cumulative model) and 0.114
(adjacent categories model). The p values are greater than 0.05 but not so far away that one
can be sure that there is no effect of age. In the following, age is included as a smooth function
approximated by four cubic B-splines in the location term and as a linear function in the disper-
sion term (a linear function turned out as a good approximation in the dispersion term). Figure 6

shows the resulting curves (left: location effect f(age)(age), right: dispersion effect f ðSÞðageÞðageÞ,
upper panel: cumulative model, lower panel: adjacent categories model). It is seen that in both

Figure 5. Results of the simulation study (additive adjacent categories models). The boxplots show the squared differences
ðη̂ ir � ηirÞ2 averaged over all 500 observations and all four categories, when fitting the model with global effects (right),
the location-shift model (middle) and the model with category-specific effects (left)
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models, a linear effect of age seems not appropriate. In particular, young and older persons
seem to feel less safe than persons in their forties. Testing if the smooth effect of age is needed
yields a p value of 0.046 (cumulative model), which indicates that age should not be neglected.

5.5 Nuclear Energy

As a second example, the effect of age on the fear of the use of nuclear energy is considered.
Figure 7 shows the estimated location and dispersion effects for the additive cumulative and ad-
jacent categories model. The estimates of the location effect indicate that the fear of the use of
nuclear energy is strongest for people in their sixties and weakest for people around thirty. The
estimates of the dispersion term indicate that older people tend to have less dispersion than
younger respondents. Likelihood ratio tests show that location as well as dispersion effects
are not to be neglected. The likelihood ratio test for the location effects is 64.62 on 4 df, and
for the dispersion effect, 21.24 on 1 df if the cumulative model is fitted. Similar values result
for the adjacent categories model.

6 Programme Packages

Classical cumulative models that do not contain a shifting component can be fitted by using
the function vglm() of the R package VGAM (Yee, 2010). Parametric and additive
location-shift models can be fitted by using the R add-on package ordDisp (Berger, 2020),
which is described in the following.

Figure 6. Safety data (left: location effect f(age)(age), right: dispersion effect f ðSÞðageÞðageÞ, upper panel: cumulative model,
lower panel: adjacent categories model). Note that age is measured in decades
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The call of the main fitting function (in parts) is

ordDisp(formula, data, family = c(``cumulative'', ``acat''), n_bs = 6,
reverse = FALSE, …).

The formula needs to have the form y ∼ x1 +… + xp | z1 +… + zq, where on the right-hand
side of the formula, the x-variables of the location term and the z-variables of the dispersion
term are separated by the |-operator. The function allows to fit smooth effects f(.) and f(S)(.)
by using s(x) and s(z) in the respective part of the formula. The functions are then fitted
using n_bs B-spline basis functions. In the case of nominal covariates, ordDisp() generates
0-1-coded dummy variables. If reverse=TRUE, the function uses the reverse categories rep-
resentationPðY ≥ rjxÞ=PðY < rjxÞ for the cumulative model andPðY ¼ rjxÞ=PðY ¼ r þ 1jxÞ
for the adjacent categories model. To keep the interpretation of the dispersion effects, the scal-
ing factor is reversed to (k/2� r) in the cumulative case and (r� k/2) in the adjacent categories
case.

Function ordDisp() internally calls function vglm() of the R package VGAM
(Yee, 2010). Thus, the fitted object inherits all the values of a vglm-object, and importantly,
all the methods implemented for objects of class vglm, like print, summary, predict
and plot can be applied. Additionally, star plots depicting the location effects against the dis-
persion effects including pointwise 95% confidence intervals (cf. Figure 3) can be generated
using the function plotordDisp(object, names, …), where the variables to be plotted

Figure 7. Nuclear energy data (left: location effect f(age)(age), right: dispersion effect f ðSÞðageÞðageÞ, upper panel: cumulative
model, lower panel: adjacent categories model). Note that age is measured in decades
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are passed to the function by the names-argument. Note that the use of plotordDisp() is
only meaningful for variables with both a location effect and a dispersion effect.

7 Concluding Remarks

The main messages of the paper can be summarises as follows:

• Proportional odds models, or, more general, models with category-specific parameters are
widely dispensable. In many applications, a simpler version is appropriate. It has in particular
been demonstrated that parametric location-shift models typically are sufficiently complex to
approximate the underlying probability structure in ordinal regression.

• Location-shift models, which are propagated here, have the advantage that they show not only
location effects but also dispersion effects or tendencies to respond, which are typically pres-
ent in applications.

• If linear effects are questionable, the smooth location-shift model provides an alternative to
simple global effect models. The models allow to account for smooth dispersion effects.
The wide applicability of location-shift models has the additional advantage that variable se-

lection becomes easier. In general category-specific models, there is a hierarchy that describes
how single variables can be influential. The effects of a variable can be category-specific, global
or zero. Variable selection means one has to determine which variables have which of the three
possible influence structures, category-specific, global or zero. In principle, this can be obtained
by using tests, although several tests are needed for each variable. More advanced and attractive
methods of variable selection that are widely used nowadays are based on penalty methods like
the lasso or the elastic net (Tibshirani, 1996; Zou, 2006; Zou & Hastie, 2005). They can not be
used directly to the hierarchical selection problem in ordinal models. A hierarchical method that
works for ordinal models has been proposed by Pössnecker & Tutz (2016), but rather difficult
penalty terms are needed. In location-shift models, variable selection is much easier because ef-
fects are separated in a location effect and a dispersion effect. Then, variable selection by tests
means one tests if coefficients are zero. Future research on advanced selection methods based
on regularisation methods can use the simple structure of the linear predictor with separate co-
efficients for effects.
Implicitly, we also compared two approaches to modelling data, the cumulative approach and

the adjacent categories approach. Typically, the models yield similar goodness-of-fit. A distinct
advantage of the adjacent categories model is that no restrictions on the parameter space are pos-
tulated, which makes it more adequate when allowing for a more complex predictor structure.
There is a third class of ordinal models, namely, sequential models, which have not been con-

sidered here. Parametric sequential models have the form PðY ≥ rjY ≥ r � 1; xÞ ¼
Fðβ0r þ xTβrÞ. They reflect the successive transition to higher categories in a stepwise fashion
since Y ≥ r given Y ≥ r� 1 can be interpreted as the transition to categories higher than category
r� 1 given at least category r� 1 has been reached. Sequential models are strongly linked to dis-
crete survival and have been considered, for example, by Armstrong& Sloan (1989), Tutz (1991)
and Ananth & Kleinbaum (1997). Location-shift models for this type of model seem less useful
because of the structure of the model. In sequential models, the category-specific parameters βr
have a distinct meaning, and they represent the impact of covariates on the transition to higher
categories given lower categories have already been reached. Including a shift term, which rep-
resents a tendency to middle or extreme categories seems less useful.
All three types of models, cumulative, adjacent categories and sequential models have also

been used to model marginal responses in contingency tables. For example, Bartolucci
et al. (2007) extended the results of Colombi & Forcina (2001) and Bergsma & Rudas (2002)

325Parametric and Additive Location-Shift Approaches

International Statistical Review (2022), 90, 2, 306–327
© 2022 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.

 17515823, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/insr.12484 by G

E
SIS - L

eibniz-Institut fur Sozialw
issenschaften, W

iley O
nline L

ibrary on [24/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



and considered general interaction modelling including higher order interactions. If all variables
are categorical, these modelling approaches provide alternative parameterisations, which possi-
bly could be simplified by using shifting approaches.
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