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Michael Friedman, Wolfgang Schäffner

On Folding: Introduction of a New Field 

of Interdisciplinary Research

I.

Folding “is at work everywhere,”1 it bends and weaves, it manifests and creates, it nour-

ishes and is nourished, it operates materially and materializes operationally. Nature, and, 

one might claim, organic matter, is modulated through and impregnated by folding: one 

might wonder whether there is a limit to folding within and outside the organic realm of 

matter, since it seems to involve all scales, from the largest – as with inorganic geological 

folding processes – to the smallest – as with the DNA molecule.

Folding can be taken as a materialized operation: some frogs fold leaves to secure their 

eggs,2 while chimpanzees fold leaves to swallow them whole.3 Some trees fold their leaves 

while it rains or after certain hours.4 As a spatial operation, folding can occur in at least 

three different dimensions. One-dimensional linear folding of fibers, two-dimensional 

planar folding of strata, leaves or surfaces, and three-dimensional folding of bodies 

can all be considered as various, spatial and architectural layers of matter as well as 

geometrical processes of folding.5 Back to the most basic of organic levels, the protein, 

the brain or the embryo, as what one might call the beginning of life or its basic units, 

materialize operationally through and by folding and folds. Proteins fold themselves 

1 Deleuze/Guattari 1984, 1: “Ça fonctionne partout, tantôt sans arrêt, tantôt discontinu.”

2 For example the waxy monkey tree frog. See Wells 2007, 47.

3 Huffman et al. 2013, 20.

4 See e.g. the tree Albizia saman. See also: Satter et al. 1974, 413.

5 O’Rourke and Demaine also approach folding from the perspective of different dimensions:  “The 

objects we consider folding are 1D linkages, 2D paper, and the 2D surfaces of polyhedra in 3-space.” 

In: Demaine/O’Rourke 2007, xi.
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with amazing speed, which begs the question: how does protein ‘know’,6 out of million 

possible folds, to choose the right one so quickly? 7 The embryo and the brain materialize 

themselves only through the process of being folded adaptively.8 The fold, we claim, is 

a material operation or/and an operative material starting at the molecular and ending 

at the macro level.9 

In human culture folding plays an essential role as well. It is found in techniques of 

textile manufacturing, such as weaving, knotting and braiding, in calculating10 and more 

importantly in cultural techniques of writing. Each technique might be thought as dealing 

with a sequential series of signs. Note, for example, Alexandre-Théophile Vandermonde’s 

1771 system of notation for knots, arising directly from folding, weaving and the textile 

industry,11 or consider the origins of computer-science as having its roots in weaving: 

Basile Bouchon’s 1725 punch-card controlled loom further improved on by his assistant 

Jean-Baptiste Falcon as a precursor to the highly successful Jacquard loom of 1805.12 In 

addition, the mathematician Carl Friedrich Gauss first attempted to find a formalization 

the braid: a collection of folded, interweaved within each other curves formulized through 

sequence of letters.13 Examining the techniques of writing, papyrus was one of the ancient 

mediums for linear alphanumeric systems – a rolled surface. Other methods for storing 

information existed before and alongside paper and papyrus, for example, clay tablets,14 

knots in threads or strings (e.g. Quipu used for administrative and calculation purposes) 

and hieroglyphs carved into stone.15 But looking closely at paper and papyrus, linear writing 

was incorporated within and enabled by the papyrus’s two-dimensional rollable surface. 

Papyrus had to be unrolled for writing and reading, whereas storing and transferring was 

6 Here, the following question is also called for: is protein an agent, having in its possession implicit 

knowledge, or should one expand the agent of the Savoir-faire?

7 This is known as the Levinthal’s paradox, a thought experiment conceived in 1968. See Levinthal 1968.

8 Susan 2007, 72: “As new cells form, the embryo is forced to conform to available space. To adapt to 

the confined space, the embryo folds (curves) in both transverse and longitudinal planes. Folding in 

the transverse plane causes the embryo to become cylindrical in shape; longitudinal folding results in 

the head and tail folds. Structures within the embryo (e.g., heart, intestines) also undergo folding to 

conform to the space available to them.” See also Marín-Padilla 2011, 11.

9 See Seppi’s contribution in this anthology concerning the logic the fold beckons towards.

10 Cf. also Krämer/Bredekamp 2003, 17, where calculation, although stemming from particular cultural 

techniques, is described as a “forgetting machine.”

11 See Epple 1999, 52, where Epple describes Vandermonde’s invention as follows: “The mathematization 

of textile pattern dealt also with the rationalization through standardization” (translated by the authors). 

Epple links standardization in the textile industry to the standardization of notation of pattern. 

12 See Schneider 2007, esp. chapter IV (system of notation for textiles) and chapter IX, regarding punch cards.

13 Epple 1998. Cf. also Epple/Krauthausen 2010, 131f. concerning the “Papiertechniken.” See also Epple’s 

treatment of the mathematization of the braid (Epple 1999, chapters 6.3 and 6.4). Another origin of the 

mathematical study of braids began with the investigation of the simultaneous movement of a finite 

number of points in the complex plane (ibid, 185 –192).

14 In Mesopotamia, cf. Glassner 2003.



 On Folding: Introduction of a New Field of Interdisciplinary Research 9

done while rolled. The rolling of papyrus produces wrinkles without creases, thus rolling 

and unrolling served a perfect reversible way of folding and unfolding text.

Compared with papyrus, paper is a highly foldable material and therefore able to incor-

porate folding processes such as creases. With the introduction of the codex, the spatial 

organization of text changed from that of a continuous roll to that of a sequence of 

pages, which are connected through the spatial orientation of the sheet. For this reason, 

Immanuel Kant took the sheet of written paper as a starting point for his epistemological 

analysis of space and geographic orientation.16 The written line has an orientation in 

space, which changes as the page is turned, rotated, bent or folded. In Kant’s time, a 

sheet of paper could have also meant a book page, printed paper that is incorporated in 

the complex spatial arrangement of printed sheets.

The alphanumeric code – its writing and storage – is thus deeply linked to the material 

operation of folding. Taking the fold as an epistemological unit, as Gottfried Wilhelm 

Leibniz did, shows that it is nothing but a basic one. The fold functions neither as a basic 

element (the indecomposable chemical element), nor as one of the composing elements 

of Morse code (the line and the dot). Indeed, it does give rise to other operations and 

elements, but one cannot point to the manner in which this unit has originated. This is 

where the epistemological discourse concerning folding begins. The geometric point, 

defined by Euclid as the basic element among all spatial elements, is for Leibniz no longer 

a minimal or static object, but an operation of folding.17 Not only is the fold already there 

– manifest in the protein, the brain or the embryo – it is always in-between. There is always 

a movement from one fold to the next, refusing a reduction to the basic units of life: 

“[e]verything moves as if the re-folds [replis] of matter possessed no 

reason in themselves. It is because the Fold is always between two 

folds, and because the between-two-folds seems to move about 

15 Another controversial narrative regarding the development of writing from calculation is given by Denise 

Schmandt-Besserat, regarding the move from three-dimensional clay tokens to their two-dimensional 

negative imprint on their containing envelopes. According to Schmandt-Besserat, this move occurred 

in order to preserve the function of the three-dimensional clay tokens, by sealing them in hollow clay 

spheres. Cf. Schmandt-Besserat 1992.

16 Kant 1991, 29: “In a written page, for instance, we have first to note the difference between front and 

back and to distinguish the top from the bottom of the writing; only then can we proceed to determine 

the position of the characters from right to left or conversely. Here the parts arranged upon the surface 

have always the same position relatively to one another, and the parts taken as a whole present always 

the same outlines howsoever we may tum the sheet. But in our representation of the sheet the distinction 

of regions is so important, and is so closely bound up with the impression which the visible object 

makes, that the very same writing becomes unrecognizable when seen in such a way that everything 

which formerly was from left to right is reversed and is viewed from right to left.” See also Krauthausen’s 

contribution regarding how folding in books subverts the notions of dimensionality and directionality.

17 This conception expressed for example in: Deleuze 1993.
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everywhere: Is it between inorganic bodies and organisms, between 

organisms and animal souls, between animal souls and reasonable 

souls, between bodies and souls in general?”18

Beyond the two folds, the materialized operation and operative matter, let us briefly 

examine one historical cultural narrative of folding as reflected in origami. The history 

of origami comprises two origins: western and eastern.19 The origin of paper folding in 

Japanese tradition is rooted in ceremonial packaging. It goes as far back as the 17th century 

or possibly earlier. The western tradition of origami can be traced back to 16th century 

German baptismal certificates folded into a double-blintz. Folding is also evident in Al-

brecht Dürer’s 1525 manuscript Underweysung der Messung mit dem Zirckel und Richtscheyt, 

in which he suggested tracing two-dimensional drawings of unfolded polyhedra, then 

cutting them out to construct the finished polyhedral. 20 However, it was Friedrich Fröbel, 

the German inventor of kindergarten, who contributed most to the development of 

folding throughout Europe and beyond during the 19th century. Interestingly, in 1814, 

Fröbel worked as an assistant in the mineralogical museum of the University of Berlin. 

He assisted in the classification of the museum’s crystal collection, while taking classes 

from Christian Samuel Weiss on crystallography and mineralogy.21 Maintaining that the 

fixed laws of nature also guide the world of infants and adults, it is therefore obvious 

that Fröbel’s ideas already contained a geometrical mathematical kernel, to be found in 

the spatialization and the mathematization of folding. Indeed, starting from the second 

half of the 19th century, one finds several school and kindergarten instructional materials 

referring to folding.22 Although Fröbel did not consider paper folding a mathematical 

operation, it has certainly inspired such approach, culminating in Tandalam Sundara 

Row’s work.23 In it, folding is presented as having a purely mathematical basis: once one 

builds the basic folds, other folds can be derived from the already existing system. It is 

equally important to note that Fröbel links two-dimensional folding of paper directly to 

one-dimensional folding present in weaving and braiding and also to three-dimensional 

arrangements of building blocks. Fröbel thus shows how these different fundamental 

cultural practices converge in the material and spatial operation of folding. Fröbel’s 

Kindergarten Gifts demonstrate it as a geometrical exercise. 

18 Deleuze 1993, 13 (translation changed). 

19 We follow the historical account presented in Hatori 2011 and in Lister 1997.

20 Dürer 1525. See also Heuer 2011. Note that during Dürer’s time paper folding was not considered at all 

a mathematical object. However, Dürer’s work directly influenced the mathematicians that followed 

him: Wolfgang Schmid and Augustin Hirschvogel (cf. Richter 1994, 58 – 66). This method had possibly 

influenced Henry Billingsley’s 1570 translation of Euclid’s Elements, adopting Dürer’s diagrams and 

folding suggestions, and also 1613 Denis Henrion’s description of the folding of platonic solids, in his 

Memoires Mathematiques.

21 Cf. Lilley 1967, 15.

22 For example: Miller/Macaulay/Stevens 1855; Martin 1893. 

23 Row 1893.
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The two traditions of folding – the eastern and the western – merged towards the end of 

the 19th century, due to the introduction of Fröbel‘s system into Japanese kindergartens 

concomitant with Japan’s opening of its borders to the western world. During the 20th 

century further development took hold: a standard notational system was accepted, 

using the one established by Akira Yoshizawa supplemented by Randlett-Harbit. With 

standardization there comes the possibility for an algorithm: a specific set of instruc-

tions for carrying out a procedure, in this case, the final folded form. However, what is 

clear from this brief overview is that origami and folding were not always conceived as 

codified system, composed of basic folds, basic units; for a long time it was not even 

considered as such.24 

The idea that folding should not necessarily be codified is also reflected in the growing 

understanding of the structure of proteins and DNA – one of 20th century’s most im-

portant fields of study where folded structures emerge. Even before the discovery of the 

double helix, molecular biologists, Alfred Mirsky and Linus Pauling, described proteins 

in 1936 in terms of a folded structure.25 Folding was tightly connected to form in matter. 

A fundamental association between folding in organic matter (such as in proteins) and 

alphanumeric code is evident already in Schrödinger’s famous book What is life? based 

on a lecture he gave in 1943. 

Schrödinger relates code to aperiodic crystals, and offers to think of chromosomes as 

coded. However, he adds that 

“[…] the term code-script is, of course, too narrow. The chromosome 

structures are at the same time instrumental in bringing about the devel-

opment they foreshadow. They are law-code and executive power – or, to 

use another simile, they are architect’s plan and builder’s craft – in one.”26

It is obvious that, if indeed so, folded genetic material is a very special code, compared 

with alphanumeric and digital codes, since it not only encodes different activities but 

also operates as a type of motor and designer at the same time. In this sense, the fold 

opens the possibility for a new form of analog coding; but not as one of several types of 

analog codes,27 rather in a general sense, which reflects the relations between matter 

24 It is interesting to note that the axiomatization of geometry based on folding took place only in 1989 

independently in Justin 1989 and Huzita 1989.

25 Mirsky/Pauling 1936.

26 Schrödinger 1944, 22.

27 Analog codification, in contrast to digital codification (as a discrete representation or symbolization 

of information, e.g. the Morse code or the Braille system), is a continuous representation of codified 

information enabled by a continuous set of values (for example, voltage signals). It employs different 

mathematical tools compared to those of digital codes, namelyfor example, convolution and Fourier 

transform.
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and code. Schrödinger’s point of reference is not digital code but Morse code, when he 

reflects on the relationship between the number of signs and their possible combinations 

within the “miniature code […] of this tiny speck of material,”28 that is, when he examines 

the relationship between code and matter.29

It seems therefore that, although folding is one of the basic processes and operations in 

existence, it could be regarded as encoded. Nonetheless, can one say folding is or could 

be coded? What are the relations between folding, folded materiality and code? Is the 

fold a necessary constitutive condition or just an after-effect? It is here that the question 

of code, especially digital code, arises as what opposes folding. Digital code is normally 

understood as what codifies operations and processes into an alphanumeric series of 

signifiers, enabling us to view operations – such as folding, but also and obviously, text – 

as a linear series of transmissible, discrete operations,30 which can be repeated over and 

over.31 Starting from the end of the 19th century, code was no longer perceived as what 

stems from a codex, but rather as what codifies and externalizes thought or meaning 32 

through the codification of difference itself.33 Transmitted alphanumeric code points 

towards deciphering, reading and writing as what belongs to digital one-dimensional code, 

as we shall see later on.34 Digital code is ultimately denuded of any sign of materiality; it 

represents pure form overcoming not only materiality but also the surrounding material 

environment and space. Folding, we claim, represents fundamentally nothing of this sort. 

Might it be said that digital code, comprising distinct separable elements, represses the 

constitutive aspect of folding?

28 Ibid, 61. See also: “What we wish to illustrate is simply that with the molecular picture of the gene it is no 

longer inconceivable that the miniature code should precisely correspond with a highly complicated and 

specified plan of development and should somehow contain the means to put it into operation” (ibid, 62).

29 See Kay 2000, 59 – 66. Examining Schrödinger’s lecture, how it was conceived and historiographized. 

Kay claims in addition that Schrödinger did not think on information or on “one-dimensional Boolean 

message inscribed on a magnetic tape” (ibid, 66). 

30 Cf. Kittler 2008.

31 Cf. Deleuze 2003, 114.

32 See Slater, 1888, v – xvi: the sentence “The Queen is the supreme power in the realm” is coded via 

sentences whose words have no relations to each other. One can detect this externalization in Shannon’s 

Master thesis (Shannon 1938), where the simplification of electrical circuits is done via Boolean algebra, 

i.e., as what operates automatically. Concerning this conception of Boolean Algebra, cf. Schäffner 2007. 

It is crucial to note that Slater 1888 refers to code as what “ensures secrecy” (Slater’s 1888 book title), 

hence there is a transition from the codex as known-to-all to code as barely known to two individuals: 

sender and receiver. 

33 The codification of difference in language can be seen in Morse code in the visual difference between 

‘–’ and ‘•’. Compare also Deleuze 2003, Chapter 12. Deleuze indicates that the diagram, composed of 

“asignifying traits” being neither signifiers nor significants (ibid, 100), is replaced by digital code.
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This book aims to reshape the too-well-known narrative that locates folding under the 

category of digital code and hence allows it to disappear.35 We wish to not merely suggest 

a post-digital conception of coding, but to point towards its possible incarnation through 

and by folds and folding. This already requires different conceptions and possibilities of 

codification based on an understanding of a local notion of code.36 We attempt to do 

so by proposing folding as a fundamental operation that not only preceded digital code, 

but has also shaped it; in this context digital code emerges as a reduced form of folding. 

Were it to emerge as such, a reconstitution of analog code would be feasible as well. 

The relationship between the continuous and the discrete would have to be reshaped.

II.

Before we embark on our program, let us (presumably) step back from the cultural 

sphere. Let us step back from the narrative, depicting folding in its infancy as a primitive 

cultural technique ‘progressing’ towards a codification, and consider the study of protein 

folding during the 1950s. Towards the end of 1956, in a symposium on information 

theory in biology, RNA was described by the Lithuanian microbiologist Martynas Yčas 

as follows: “[…] the RNA molecule can be regarded as a text, written in a four-symbol 

alphabet, which encodes another text, the protein, written with about twenty symbols.”37 

One might therefore assume the folded structure of these molecules can be coded fairly 

easily, as Yčas indicated: “Since both DNA and RNA are texts written in a four symbol 

alphabet, it is natural to suppose that the coding problem is very simple.”38 As hopeful 

as his prediction was, Yčas followed with: “[r]ecent evidence indicates, however, that 

this is incorrect.”39

34 Here we refer to Jakobson 1971, 276 – 278, where the problem of understanding language is turned (in 

the context of Markov chains, information theory and probability) into a problem of deciphering and 

analyzing code with its distinctive features. Compare also Cherry/Halle/Jakobson 1953 and also Halle/

Jakobson 1956, 5.

35 For an analysis of the understanding of folded structures as what can and should be codified within 

biology see Kay 2000, chapter 2, where Kay describes the move from a discourse of organization and 

specificity to a discourse of information: “Specificity […], grounded in three-dimensional molecular 

structures, [interchanged to] Information […], abstracted as a one-dimensional tape, a transaction 

devoid of experimental measures and material linkages” (ibid, 41).

36 Concerning the locality of the code, we note that, before the Mesopotamian sexagesimal place-value 

system evolved into the chief method of number representation in the 19th century BC, different systems 

of numerals were used in various contexts (Damerow 1996, 161 –162), which means that the use of code 

was local, i.e. context-dependent.

37 Yčas 1958, 70.

38 Ibid, 89.

39 Ibid.
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Why was Yčas’s conception of coded DNA doomed to fail? Indeed, one might claim the 

above symposium is the ‘wrong’ epilogue to Schrödinger’s codification program, as it 

sought to reduce RNA to the form of digital code, instead of exploring the possibilities 

afforded by the aperiodicity of code. As Schrödinger saw it – suggesting the interlacing 

of weaving and code – compared to a repeating pattern, codification was envisioned a 

“masterpiece of embroidery.”40 Yčas’s concluded that through reduction to codification 

the problem of RNA structure and function becomes “very simple”. Reduction makes it 

easy to resolve, but then Mirsky and Pauling’s folded structure of proteins does not have 

real implications for codification. In the midst of the rise of the information technology 

industry, this symposium had powerful consequences regarding the discourse of folding 

and codification.

It is important to note that, towards the end of his paper, Yčas offered the following 

solution to the above problem: “This suggests that a whole series of codes of this type 

may exist, all having similar general properties. At present the major difficulty is not to 

produce a coding principle that explains the known facts, but rather to make a choice 

between the many that are possible.”41 The solution is not to abandon digital code but 

rather to stick to it. This viewpoint was expressed in a 1965 lecture by the biologist François 

Jacob at the College de France, where he stated that a chemical message is written not 

with what is drawn, but rather with alphabet, or more precisely using a code such as 

Morse code.42 This corresponds to Yčas’ suggestion: either a multitude of codes or a 

search for a better code, eventually using “the electronic computer.”43

Here lies the problem in the conception of digital code in the study of RNA/DNA. Greatly 

affected not only by the Wiener-Shanon discourse but also by the invention of the Turing 

machine, the perspective that emerged at the symposium was that computation is a 

linear operation.44 Alan Turing’s seminal paper, On computable numbers, is considered 

one of the breakthroughs of modern computer science.45 The paper describes a model 

for every computing machine and solves in addition Hilbert’s Entscheidungsproblem.46 

40 Schrödinger 1944, 5.

41 Yčas 1958, 93.

42 Jacob 1965, 22: “Heredity is determined by a chemical message inscribed along the chromosomes. The 

surprise is that genetic specificity is written, not with ideograms as a Chinese, but with an alphabet as 

in French, or rather in Morse. The meaning of the message comes from the combination of words and 

signs in the arrangement of words into sentences. The gene becomes a phrase of a few thousands of 

signs, started and terminated by a punctuation” (translation of the authors). Compare also Liu 2010, 

esp. chapter 2.

43 Yčas 1958, 93.

44 “There is good reason to believe that machines will actually be built which can compute any number that 

can be computed, and which, even more generally, can arrive at the results of any thinking which can be 

described by explicitly-defined operations” (Quastler 1958, 7).

45 Turing 1936.
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The greatest achievements of the Turing machine is arguably not in providing the proper 

model for a machine, but rather in supplying a definition of computability, that is, which 

numbers can be computed de facto.

Computation was done for centuries by hand, either literally, as with the abacus, or through 

writing, when more complicated computations demanded it. Computational apparatuses 

predated the Turing machine, nevertheless Turing’s idea can be thought of as replacing 

the writing-computing hand with a mechanical process, independent of direct human 

intervention. However, in this exchange, the topological surface of computation was left 

out, much more than the human agent.47 The two-dimensional object, the paper, as it 

is embedded in a three-dimensional space, was forgotten.48

The writing of the Turing machine is considered to be denuded of any trace of materiality. 

In its description, an emphasis was placed on the recording of transitions from one 

state to the other and certainly not on the physical materiality of the Turing machine: “A 

computable sequence γ is determined by a description of a machine which computes γ.”49 

Indeed, computation was reduced to machine writing, based on an axiomatic system.50 

When Turing provided an account of the workings of a computer, he stated its operations 

could be reduced to elementary steps: “Let us imagine the operations performed by the 

computer to be split up into ‘simple operations’ which are so elementary that it is not 

easy to imagine them further divided.”51 In a striking parallel to Hilbert’s famous remark 

on geometry as an axiomatic system,52 the relation of machine operations to their actual 

realization was disregarded in favor of the relations between the elementary operations. 

In contrast to Hilbert’s approach, who still made an effort to draw two-dimensional 

diagrams in his famous book Grundlagen der Geometrie,53 Turing based his machines, and 

46 Hilbert’s Entscheidungsproblem asks whether there is a general process for determining if a given 

statement A is provable, i.e. whether there is a machine which, supplied with A, will eventually say 

whether A is provable, i.e. deduced from the axioms of the logical system (cf. Ackermann/Hilbert 1928, 

chapter 3). Turing answered in the negative (Turing 1936, 259).

47 Cf. Deleuze 2003, 104, when replacing diagram with code “[t]he hand [of the painter] is reduced to a 

finger [doigt, in French] that presses the” digits.

48 See also Friedman/Krausse’s contribution to this anthology, regarding Buckminster Fuller’s critique of 

Euclid’s ignorance of the forgotten surface.

49 Turing 1936, 239.

50 Ibid, 230: “a number is computable if its decimal can be written down by a machine.”

51 Ibid, 250.

52 It is important to remember that although Hilbert’s views regarding geometry in particular and 

mathematics in general were not mathematics as an empty formal game (a view which is exemplified in 

his book Anschauliche Geometrie, Hilbert/Cohn-Vossen 1932), he stated, on his return from Halle after 

hearing Hermann Wiener’s lecture, his famous expression, “One should always be able to say, instead  

of ‘points, lines, and planes’, ‘tables, chairs, and beer mugs’” (Blumenthal 1935, 402 – 3).

53 Kittler advocates this approach: “the entire foundational crisis of mathematics boiled down to the 

question whether numbers ‘exist in the human mind’, […], or ‘on paper’, as […] Hilbert was able to 

convince his contemporaries and posterity” (Kittler 2006, 47, our italics).
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hence, the computability of code, on one-dimensional linear representation: “I assume 

then that the computation is carried out on one-dimensional paper, i.e. on a tape divided 

into squares.”54 Turing even allowed for an infinite strip of paper. One may understand 

this continuous infinite strip as analog code that enables the digital code written on it.55 

Nevertheless, this paper machine still does away with any sign of materiality associated 

with the paper strip and consequently virtualizes it.56 This influential understanding of a 

computing machine as a paper machine paved the way to the understanding of codification 

as a linear process, dealing with the transmission of information, in a way which can be 

emptied not only out of materiality,57 but also out of any form of spatiality.58 Linearity 

henceforth is thought of in terms of virtual linearity; it does not assume any dimensional 

character, as it is not embedded anywhere – spatiality is removed.

This symbolic linearity is the basis for the linearity of code; it establishes the allegedly 

successful encounter between biology and information theory. At this point, the French 

mathematician René Thom vehemently attacked the conception that biology deals with 

the transmission of information and should be understood in terms of a linear code:

“I discussed [in section 7.2] […] the abuse of the word ‘information’ 

in biology; it is to be feared that biologists have attributed an unjus-

tified importance to the mathematical theory of information. This 

theory treats only an essentially technical problem: how to transmit 

a given message in an optimal manner from a source to a receiver by 

a channel of given characteristics. The biological problem is much 

more difficult: how to understand the message coded in a chain of 

four letters of DNA (the usual description of which, it seems to me, 

needs some improvement). […] to reduce the information to its scalar 

measure (evaluated in bits) is to reduce the form to [of ] its topological 

complexity […], and to throw away almost all of its significance.”59

54 Turing 1936, 249.

55 Cf. Derrida 2001, 20. Remarking on his artisanal writing and paper machines, Derrida says the following:  

 “As if that liturgy for a single hand was required, as if that figure of the human body gathered up, bent 

over, applying, and stretching itself toward an inked point were as necessary to the ritual of a thinking 

engraving as the white surface of the paper subjectile on the table as support. But I never concealed 

from myself the fact that, as in any ceremonial, there had to be repetition going on, and already a sort of 

mechanization.”

56 See also Dotzler 1996, 7.

57 To borrow Derrida’s expression, there is a “de-paperization” of paper, i.e., of the support (Derrida 2001, 55).

58 We follow here Sybille Krämer, who wrote: “In this respect the result of the internal states of the machine, 

which are held by tablets, are not states of a concrete operating apparatus, but of sign configurations: 

this machine does not occupy any particular place in time and space, but only on paper” (Krämer 1998, 

171, our translation). Departing from Krämer, we claim one might add ‘virtual’ paper, that is, with Turing, 

paper lost its concrete reference to matter. 
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What are the grounds for Thom’s critique? Thom did not discard of the term ‘code’ as 

such, but rather called for its re-evaluation. Thom criticized Turing’s conception of code. 

He spoke against the view that code is a priori linearized and alphanumeric, that one may 

read it as if it was linear text, as did Yčas, while ignoring the fact that objects in the world 

have a “topological complexity.”60 In the above citation, taken from section 8.4 of Structural 

Stability and Morphogenesis, Thom refers to section 7.2, there he expands on his notion 

of topological complexity. Thom remarks: “the [topological] complexity of F [a dynamical 

system] is rarely defined in a way intrinsic to F itself.” Not only does the dynamical system 

lack intrinsic codification, but one cannot also impose an extrinsic codification without 

considering the family in which the system is embedded.61 Indeed, Thom states:

“If, as Paul Valery said, ‘II n’y a pas de géométrie sans langage,’ it is no 

less true that there is no intelligible language without geometry, an 

underlying dynamic whose structurally stable states are formalized 

by the language.”62

Considering the fold as what represents topological complexity, Thom does not propose to 

codify folding by imposing on it a single language or one-dimensional linear codification.63 

Instead, he proposes to fold code. What is necessary for digital code to emerge is geometry, 

or in Thom’s words a “topological complexity”, an underlying dynamic, which is not 

reducible to its “scalar measures.” At best, linear code should be viewed as a reduced form 

59 Thom 1975, 157. Let us note that in the last sentence Thom uses the preposition ‘to’ (‘à’ in French), 

whereas we suggest a more proper proposition would be ‘of’. The meaning implied by ‘to’ is that a 

reduction to “bits” enables an intrinsic reduction of topological complexity. However, as footnote 62 

suggests, Thom (in Section 7.2 in Thom 1975) advocates another approach (which is implied also from 

using the proposition ‘of’).

60 A similar criticism was directed at Lily Kay’s book Who Wrote the Book of Life? A History of the Genetic 

Code (Kay 2000). Against the erroneous depiction of DNA as “self-replicating,” as “making” proteins and 

as “determining organisms,” Lewontin offers that “organisms are not determined by their DNA but by an 

interaction of genes and the environment, modified by random cellular events” (Lewontin 2001,1264).

61 Thom 1975, 127: “The scalar measures […] should be geometrically interpreted as the topological 

complexity of a form. Unfortunately it is difficult, with the present state of topology, to give a precise 

definition of the complexity of a form. One difficulty arises in the following way: for a dynamical system 

parameterized by a form F, the complexity of F is rarely defined in a way intrinsic to F itself, for it is 

usually necessary to embed F in a continuous family G, and then define only the topological complexity 

of F relative to G.” Hence, it is not that a geometrical form should be defined and reduced via its scalar 

measures, but rather the other way around. 

62 Thom 1975, 20.

63 Thom stands against Husserl’s conception, presented in Husserl 1989, that the Pythagorean theorem 

is identical in every language: “The Pythagorean theorem, [indeed] all of geometry, exists only once, no 

matter how often or even in what language it may be expressed. It is identically the same in the ‘original 

language’ of Euclid and in all ‘translations’; and within each language it is again the same, no matter 

how many times it has been sensibly uttered, from the original expression and writing down to the 

innumerable oral utterances or written and other documentations.” (Ibid, 160).
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of folding, and not the other way around. A merger of materiality and operationality – for 

instance, in the form of ‘virtual’ paper – already informs Turing’s codification of computation.

III. 

Digital code is realized by means of writing, reading, inscribing, copying: simple opera-

tions – a term that appears in Turing’s and Yčas’s work – arranged in a virtual line (as is 

also the case with writing, reading and so on). As these are the terms used to describe 

code as a linear procedure, what should then be the terms used to discuss folding? 

First and foremost, it is instructive to recall the following simple fact: folding is a spatial 

operation. The line that appears as a result of folding a piece of paper is a spatial effect, 

an after-effect of folding paper into a three-dimensional shape. Second, we suggest that 

a folded code should involve additional operations which incorporate three-dimensional 

folding processes that go beyond the mere sequential chain of equally-connected sym-

bols, to include three-dimensional operations, such as bending, stretching, twisting and 

translating.64 Folding, as a constitutive structure, reestablishes the materiality of code 

and codification in three respects. First, it suggests that codification should be commu-

nicated through physical and material effects. Second, it transcends the dichotomy of the 

codifying symbols, namely, that these symbols can either represent objects or execute 

actions. A folded code can do both.65 The above series of three-dimensional operations 

is certainly not comprehensive. In contrast to the former list of simple operations, which 

presupposes a priori one-to-one correspondence between code and message, it hints at 

the possibility of a varying adaptive structure, which could possess a differential growth 

unique to the structure itself. Third, the materiality of bending, stretching or twisting 

does not refer to ideal operations, but rather to mechanics, to the manner in which 

material itself changes.66

64 ‘Translation’ here is used in the sense of moving from one place to another. Note that Hermann Wiener, 

who wrote a short manuscript on folded models of the platonic solids in 1893, suggested also to 

explore the relations between these operations and the operation of half-turn, which is based on folding 
(Umwendung). See Friedman 2016.

65 One may propose that an evident example for a folded code is Gödel’s theorem: Gödel proposes to 

codify the arithmetical system into itself (attaching to every mathematical symbol an integer). This 

codification causes an operation to be executed in the now-represented structure itself: it reveals the 

existence of the incompleteness theorem, proving that there is a sentence, which is neither provable nor 

impossible to prove in this system.

66 See Guiducci/Dunlop/Fratzl’s contribution in this volume.
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In order to exemplify this new series of operations, let us briefly review their emergence 

in philosophy, mathematics and biomaterials. We should emphasize we do not endeavor 

to produce terms that apply analogously to each. Instead, we wish to demonstrate how 

folding ties together materiality, logic and the symbolic.

Etymologically the English, German and French verbs to fold, falten, and plier are derived 

through Latin from the Greek plékein (to plait, to weave). In Hebrew the nouns derived 

from the verbs ‘to fold’ and ‘to multiply’ are homophones. This suggests Thom’s view-

point regarding the interweaving of language and geometry. Instead of pointing out 

how deeply language and thought are folded into one another, through etymological 

derivatives such as ‘implication’, ‘explication’ and ‘application’, it is essential here to turn 

to Deleuze-Leibniz: (un)folding is how thought interlaces itself and interlaced within 

itself.67 Codification, on the other hand, does not aim to describe the interlacing of 

thought, material and operation. To borrow Alexander Galloway’s expression in relation 

to his codification of Guy Debord’s 1965 Le Jeu de la Guerre,68 code has the “aesthetic 

of the superego: it mandates optimal material behavior through the full execution of 

rules.”69 Besides dematerialization, digital code demands totalization, as every word 

comes under the same symbolic system.70 It produces an externalization of thought. 

As Galloway observes, the codification of Debord’s game corrects and reveals players’ 

mistakes71 and hence irons out, one might say, the folds in thinking. As codification is 

but one instance of folding, folding that would cause thought to unfold itself, to move, 

borrowing Heidegger’s terminology, between the Einfalt to the Zwiefalt.72

Unfolding in mathematics appears, for example, in Thom’s work as a technical term (albeit 

not only as such). When a function f is singular, its unfolding consists of finding a family 

of functions having f as a member, where almost all other members of the family are not 

singular at all or less singular than f.73 This might be considered a conceptual step forward: 

instead of studying a single function, one examines how the enveloping family of functions 

unfolds the singularity. In Deleuze’s terms, this would mean concentrating on the space of 

problems, unfolded in front of us, instead of concentrating on axiomatics.74 It is the problem 

that unfolds. Its solution solves nothing, and especially does not try to establish a system  

 

67 Cf. Deleuze 1993, e.g. 31, 49

68 Becker-Ho/Debord 2006.

69 Galloway 2009, 148.

70 This is indeed the goal in Slater 1888: an allegedly complete dictionary of codification of all English.

71 Galloway 2009, 145.

72 Heidegger 2007.

73 See e.g. Arnold/Varchenko/Gusein-Zade 1985, 285 – 287. See also Ferrand/Peysson’s contribution in this 

anthology.

74 To cite one example from Deleuze’s work: Deleuze/Guattari 1987, 362ff.
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of basic, irreducible units, but rather to move from “one fold to another.”75 Indeed, while 

unfolding a singular function, one might obtain a bifurcation set, that is, a whole sub-family 

of degenerate singular functions, of whom f is but one member. The interplay between un-

folding a singularity and the emergence of new singularities, which in turn call for additional 

unfolding, gives rise to a mathematical process, along the lines of Thom’s description of the 

genesis and morphogenesis of life, as what “permit[s] it to create successive transitional 

regimes.”76 Unfolding and folding consequently combine into a process without origin or end.

Differential growth in biomaterials provides the last but certainly not least example. 

Growth of leaves, as in kale (a variety of Brassica oleracea), demonstrates what happens 

when a leaf grows faster at the rim compared with the center. Since there is only limited 

space for the leaf to grow, the edge of the leaf begins to bend and fold, eventually develop-

ing a fractal form.77 Biomaterials research aims to explain growth mechanisms in sheets 

where folding occurs. The purpose is not to codify every aspect of growth, but rather 

to deal with a process, which although codified, is always in transition. As a diachronic 

process of differential growth, folding changes the synchronic relations between different 

elements in the leaf, causing yet more folding to take place.

IV.

In this volume we present a cross-section of state-of-the-art research into the concept of 

folding. This collection of papers ranges from physics to architecture, from biomaterials 

to philosophy and art, and from literature to mathematics. Each discipline exhibits folding 

as a constitutive operation, which does not allow itself be reduced to a mere collection of 

linear codes. This can be seen in the first four papers, which deal with, what one might 

call, the non-material emergence of folds of thought that are nevertheless material.

Karin Krauthausen’s contribution (Literary Studies, History of Science) suggests the 

manner in which the physical action of folding (of book pages, scrolls or paper) points to 

a conceptual crossover of the notions of dimension, direction and continuity.  Following 

in the footsteps of Jacques Derrida and Gérard Genette, as well as analyzing the etymo-

logical, historical and cultural roots of paper folding in the context of literature studies, 

this paper argues that the fold conveys what linear writing had previously dissolved, 

namely, another praxis of nonlinear multidimensional reading. 

75 Friedman/Seppi 2015.

76 Thom 1975, 289.

77 Barbier De Reuille/Prusinkiewicz 2010, 2121. See also Guiducci/Dunlop/Fratzl’s contribution in this 

anthology.
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Angelika Seppi (Philosophy) follows in her paper the logic of folds of thought and 

thinking, which crosses, ignores and shakes the chains of classical logic. Unfolding 

Deleuze’s thoughts, Seppi cross-references a series of thinkers: Didi-Huberman, Derrida, 

Leibniz and Lucretius, each of whom beckoning at the other. A non-linear web, a root 

system, is revealed before our eyes, an unfolded thinking, which unfolds the folds, tra-

versing known und unknown dichotomies: matter and soul, body and cloth, ‘and’ and ‘or’. 

Claudia Blümle (Art History) examines the folds in the paintings of El Greco. Follow-

ing hidden mathematical layers that El Greco points to, Blümle discovers that the fold 

does not try to constitute any space, imaginary or real, in the plane of the picture itself, 

but is rather occupied with subverting any linear thought. Through the folded structure 

of drapes and gazes, a Deleuzian vector field emerges in El Greco’s painting. Blümle’s 

careful research conveys affinities with Seppi’s contribution, a research that unfolds the 

subversion that the fold leads to and is.

The contribution by Dominique Peysson (Physics, Art) and Emmanuel Ferrand 

(Mathematics) is an experiment both in materiality and in the mathematical theory of 

folding, showing that the fold is neither a mere metaphor nor an event in pure materiality. 

Performing an experiment with folded sheets of paper, they demonstrate that the fold 

does not act only as a metaphor but has always and already material consequences 

whether in literature or mathematics. Revolving around the enigmatic understanding of 

folds by the mathematician René Thom, their contribution hints towards Krauthausen’s, 

regarding a folded narrative that depends on its materiality and objects linearity, and 

towards Seppi’s regarding the Deleuzian conception of the fold.

Folded materiality points in several directions, two of which are explored in the following 

four papers. The first is architecture, presumably dealing with static structures. The 

second is physics and biomaterials research, dealing with the stable structures of matter. 

However, thinking through folding demonstrates these disciplines deal with nothing 

similar to stability or stasis. 

Sandra Schramke’s contribution (Architecture) concerns the architect Peter Eisenman, 

who during the 1990s invented a new architectural language with the shape of the fold. 

Eisenman’s work is based on Gilles Deleuze’s writings and René Thom’s chaos theory. 

Eisenman understands the fold as a form that builds a bridge between an inner and an 

outer world, between geometry and a mental state. The fold is based on the geometry 

of the grid, on perception as well as mathematical theories. Furthermore, the form of 

the fold implements models from the natural sciences, but without compromising the 

singular space of perception, which honors the Deleuzian event, inevitably connected 

with the fold. Eisenman’s reflections regarding the fold deal with American neo-prag-

matism, which led postmodernism from a dead end, in order to fulfill a new autonomy 

and singularity of aspirations of architecture. 
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Joachim Krausse (Architecture) and Michael Friedman (Mathematics) examine the 

multifaceted figure of Buckminster Fuller. Against the classical idea of stable structures 

of geometry, during the early decades of the 20th century, in the form of axiomatization, 

group theory and model theory, Fuller posits another view of material geometry, which 

demands its changing materiality in return. According to Fuller, geometry is not about 

points, lines and planes. Simply put, it is not about using discrete elements, but rather 

– in line with Gottfried Semper, Aaron Klug, opening seedpods and the Jitterbug dance 

– about continuous transformations, unfolding structures and movement: where all of 

these lead to a provocation of thinking, to an unfolding of it. Thought as both architectural 

and material provocation of movement sharpens the ideas raised in Ferrand/Peysson’s 

contribution, concerning the fold as what arises from movement and is apparent only 

through it.

The contribution by Lorenzo Guiducci, John W. C. Dunlop and Peter Fratzl (Bio-Materials 

Research) describes the physical and biological transformations and processes that take 

place in leaves, wood, thin tissues and seedpods among others. They allude to Fuller’s 

work, presented in Friedman/Krausse’s paper, as processes that cause a never ending 

change in form: bending, folding, stretching and wrinkling. The folding of materials is not 

only an adaption of matter to a changing environment or a response to their own external 

codification, but is also a manifestation of thin tissues, as if the fold is already internally 

codified. The materials in question comprise multiple layers that interact with one another, 

subject to intrinsic nonlinear strains and compressions. 

The final paper by Mohammad Fardin Gholami, Nikolai Severin and Jürgen P. Rabe 

(Physics) deals with folding of graphene and other carbon-based thin films. Indeed, as 

is already made clear in Guiducci/Dunlop/Fratzl, folding allows for the transformation 

of a two-dimensional material into more complex three-dimensional configurations. 

This paper tackles the question: how is self-folding encoded? How does one encode a 

continuous change?
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V.

Let us attempt to summarize. Could the material operations of folding be considered a 

code albeit different from alphanumeric or digital codes? This is comparable to Schröding-

er’s thought concerning the relationship between chromosomes and code, a moment 

when code was introduced into biology. In this instance Schrödinger writes: “the term 

code-script is, of course, too narrow.”78 Folding thus helps us to rethink the classical 

dichotomy between continuous magnitudes and discrete elements, as already discussed 

in Aristotle’s Physics: “whereas points can touch, discrete unities exist only as a series 

(ἐφεξῆς), since there is no in-between (μεταξὺ) of the symbolic elements.”79 Folding 

forces us to combine the continuous line and the discrete symbols into one and the 

same operation, while avoiding the conception of the digital as what withdraws from and 

denudes the underlying analog code. In the same way, one needs to develop a different 

concept of analog code, not as a transmission that varies over a continuous range with 

respect to sound, light or radio waves, among other mediums, but rather as a concept that 

emerges from the following three general characteristics of folding. These characteristics 

refer both to alphanumeric and digital codes as well as to the analog code, where both 

aspects, the digital and the analog, stem from folding as a materialized operation. 

First, we argue that the totality of code – a totality present either by aspiring to discretely 

codify every word in the language or by conceiving any element as a part of a continuous 

analog code – is a conception that folding subverts.80 Folding by its nature is local, a 

local adaptability. There is no infinite folding as there is no complete codification of 

material folded onto the material itself.81 Folding is local, as it is adaptive to specific 

local conditions. An external total code, which codifies every material in the same way, 

ignores local conditions and adaptions that the code has to undergo. Even in the same 

material itself, the same structure, the same tissue, there are areas of different folded 

densities, whose code adapts differently.82 In this sense, folding has an important relation 

to the whole. Surface tension defines the local fold and its being operational whereas 

changing environmental conditions generate continuous adaptions of the folding code.

Against this move towards a totality, evident both in digital as well as analog codification, 

we offer to formulate a conception of “minor sciences,”83 which do not aim towards a 

78 Schrödinger 1944, 22.

79 Aristotle 1961, Book V, Chap. 3, 227a 29 – 31, 96 (translation changed).

80 See Blümle’s contribution to this volume, where one can come to understand the fall of folds as 

subverting the codification of the geometrical closed space. 

81 Such an imaginary scenario is presented in Borges’s Del rigor en la ciencia.

82 Cf. section 2.2.2 in Guiducci/Dunlop/Fratzl’s contribution in this anthology. During a tree’s growth, cells 

adapt to changing conditions (weight, temperature, moisture, etc.).

83 Deleuze/Guattari 1987, 361.
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full uncovering of the underlying principles, but rather gestures towards the unfolding of 

an aggregate of problems,84 an aggregate of local folded spaces spun together, each of 

which enabling a unique different codification. The codification of a growing folding leaf 

or an unfolded narrative 85 via differential geometry or via literary studies may intimate 

mutually adaptive folding codes, where their folded structures beckon to each other 

developing different areas of research.

Second, we claim that folding underlies a conception of materialized symbolic operations. 

Let us demonstrate that with two examples, already presented in brief: 1) looking at 

the holes of punch cards, one may observe that, though stemming from weaving, the 

holes exist now as a collection of discrete objects, not only detached from any act of 

weaving – from the action that suggested them – but also from any reference to reading. 

2) Examining a folded line, created from folding a finite piece of paper, one may now 

neglect the paper and regard the line as the basic element – together with the infinite 

planes it may span – assuming an axiomatic approach, extended to infinity.

Against the background of the above two examples, let us take our cue from the architect 

Gottfried Semper, who claimed that the true manifestations of walls, that is, of space 

enclosures and separating planes, are woven materials: braids, mats, hangings and 

tapestries.86 In light of this, we aim to bring back materiality into discrete elements – the 

point, the line, the plane – that is to say, we wish to relate back again the act of weaving 

and the point, or, more explicitly, the continuous and the discrete. Weaving itself is a 

synthesis of discrete elements – from the holes in the punch card to the creased points 

of the thread while being weaved – and continuous movement – the movement of the 

whole loom. We aim to bring back folded materiality as what opens up possibilities for an 

interplay of the continuous and the discrete: a hole is made possible by the continuous 

movement of thread, analog code is made possible through the digital discrete encoding 

of the knot, the thread or the molecule, through the discrete perforation of a punch card.

Third, we would like to point out that folding underlies not an externalization of thought but 

rather an internalization of a three-dimensional structure, a “topological complexity” that 

should not be lost or forgotten via any sort of codification. Isomers – molecules having the 

same chemical formula but different chemical properties – are the simplest example in this 

respect. Ever since Antoine Lavoisier (1743 –1794), it was common to identify a material with 

its chemical composition. However, in 1828, Friedrich Wöhler discovered this is not enough, 

when he produced urea, which has the same chemical composition as ammonium cyanate 

(CH4N2O) albeit different properties. Jacob Berzelius coined the term ‘isomer’ several 

84 Ibid, 362.

85 Cf. Krauthausen’s contribution to this volume.

86 See e.g. Semper 1983, 21.
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years later. This has led slowly to the understanding that “molecules had to be understood 

from the perspective of stereochemistry, that is, how atoms in a molecule are arranged 

in space relative to one another.”87 In 1848, Louis Pasteur discovered molecular chirality 

by investigating tartaric acid, thereby further emphasizing the importance of topological 

structure.88 What both discoveries – Wöhler’s and Pasteur’s – indicate is the performative 

character – both executing and realizing – of a folded structure in comparison with a coded 

one. Hence, a discrete code – as in Lavoisier’s codification of chemical elements in the 

shape of an alphanumeric code – is problematic. Although Lavoisier developed a material 

symbolic code, it nevertheless could not represent materiality adequately. The linear or 

diagrammatic symbolic representation had to be amplified by three-dimensional elements. 

Wöhler and Pasteur took on this crucial step, and this insight was later also prominent in 

1874 van ’t Hoff’s discoveries.89 In this respect, Lavoisier’s codification may be considered 

an extreme reduction of folded code, achieved by ignoring its materiality and spatiality.

The change imposed on Lavoisier’s codification, necessitated by new discoveries, as well 

as other aspects of folded code/coded fold, point towards a conception of an adaptive 

code. More than a local, symbolic and changing digital code, where a codifying letter 

has already several possible ways of execution, we seek an adaptive coded material, 

responsive to the feedback loop (from changing environmental conditions back to the 

material and vice versa), which is always operative, always changing the inner codification 

of the material and causes folds to emerge. 

On this basis we suggest digital code be regarded an instance of a broader folded inter-

lacing between analog and digital code. Thus, the conception of digital code could be 

revised. As with the Turing machine, the sequence of discrete symbolic states is only 

made possible via the continuous, local, material band, unrolled as an old papyrus, 

rendering the symbols readable, executable and realizable. Folding, as a material basis 

for symbolic operations, thus regains its importance as an amalgamation of analog 

operations and discrete symbols. It alters in addition the classical idea of digital code 

as a dematerializing process of a purely symbolic machine. When the folded band is 

viewed in terms of continuous algorithms and sequential operations that control their 

own execution, the old notion of analog code is rehabilitated.

87 Soledad 2008, 1201.

88 Pasteur 1848. Cf. Also Caillois 1973, 55, where the discovery is described in terms of the topological 

complexity (“La composition chimique des cristaux est identique, mais non leur topologie”).

89 van ’t Hoff 1877.
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This points towards future challenges to come. If folding is “at work” everywhere, and 

folding can be regarded as an operation, coded in material and materialized in code, then 

a new analysis of folding is inaugurated. Folding of fibers and threads produces series 

of point-like folds, whereas the folding of plane surfaces results in lines, and folding 

of bodies in planes. Thus, the always-becoming structures of folding combine zero-, 

one-, two- and three-dimensional elements, as parts of an analog code that has to be 

developed in a broader sense. The idea of folding, as both opening up and necessitating 

new conceptions of an adaptive code, requires a program for developing new horizons 

for analog codes. Practical consequences of future perspectives on folding would follow 

the following three approaches: 1) an analytical approach applied to the development of 

the notion of folding as an analog code in mathematics, computer science, philosophy 

and media theory, 2) a historical and genealogical approach to analog code,90 3) an 

experimental approach within material sciences, biology and physics. Taking into account 

the dualism of matter and code would open up the analysis, history and experimentation 

of folding as a new field of interdisciplinary research.

90 Schäffner 2016.
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Folding the Narrative: 

The Dimensionality of Writing in French 

Structuralism (1966 –1972)

Dimensionality

When in 1884 under the pseudonym A Square, Edwin A. Abbott wrote his novella Flatland: 

A Romance of Many Dimensions about the perception of two-dimensional beings, his 

principal concern was to expand the consciousness of the three-dimensional beings 

making up the book’s readership.1 Accordingly, these late-19th-century readers should 

be helped to visualize the possibility of a fourth dimension; and because in a world 

known as three-dimensional this fourth dimension was not so readily perceivable, an 

expansion of consciousness was required by means of the literary stimulation of the 

reader’s imagination. In this way, Abbott’s novella also helped the sciences and partic-

ularly mathematics, since in the 19th century the latter had turned towards objects of 

knowledge of uncertain ontological status. A well-known example were the non-Euclidean 

geometries – that is, geometric systems that were internally consistent, but rested on 

different axioms than those of the geometry handed down since Euclid, which seemed 

to correspond so perfectly to the three-dimensional world, and thus in the 17th century 

became the ideal tool of the newly differentiating natural sciences, as well as, in more 

geometrico, a favored method of philosophical argumentation.2

1 Abbott/A Square 1884. In the second edition from the same year, 1884, the editor (presumably Abbott) 

in the Preface to the Second and Revised Edition addresses this reader in the name of his friend from 

Flatland, the fictive author A Square, in this sense: namely, as “readers and critics in Spaceland.” 

Anonymous 1884, IX. 

2 The argumentation more geometrico can be found in the work of René Descartes and Baruch de Spinoza 

among others. On the ontological question in the mathematics of the 19th century, see Gray 1992.
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In the 19th century the construction of alternative geometries and the hypothesis of 

unknown dimensions shook up the sciences as well as the common knowledge of the 

period, and to compensate required an altered view of reality. The novella Flatland set 

out to provide such a compensation and, to this end, made use of an analogy. To the 

two-dimension characters of the novella, the Euclidean geometry based on a three-di-

mensional world would have to appear just as fictitious as the non-Euclidean geometries 

to many three-dimensional readers (including some mathematicians).3 Abbott’s novella 

corrects this judgment of fictitiousness and attributes to the new epistemological ob-

jects at least credibility and thus conditional reality. At the same time, he schooled the 

reader in the conviction that reality should, on the basis of science, be augmented by 

an invisible element, since at least the fourth dimension (as well as further dimensions 

and hence worlds) awaited discovery and axiomatic formulation. In the 19th century the 

world felt to be real was fraying both scientifically and narratively into the imaginary; 

in other words, reality seemed to contain further worlds hidden inside itself as if these 

were folded into being.

The embrace of a fourth dimension in the 19th century led to encounters not only between 

science and literature, but also between science and spiritualism, which despite their 

differences formed a generally binding consciousness of the dimensionality of the world.4 

Here, as an education in the new dimensions, literature acted as a welcome ally; however, 

it also represented a danger, since either it neglected epistemological analogies in favor 

of a science fiction (e.g. Jules Verne) or it formalized its own world by declaring speech 

and writing to be its basis in reality (e.g. Stéphane Mallarmé).5 In neither case does it 

escape the awareness of dimensions, since also the literary and scientific consideration 

of speech and writing from the end of the 19th century onwards notes a dimensionality 

of these media. A dimension of writing and narration is explicitly determined by French 

structuralism and neostructuralism in the 1960s. Surprising with regard to the struc-

3 In the second half of the 19th century the analogy was ennobled by James Clerk Maxwell into a method for 

acquiring scientific knowledge. See Maxwell 1890, 155 –159.

4 See Macho 2004; Henderson 1983.

5 On literary science fiction, see for example Vingt mille lieues sous les mers (Twenty Thousand Leagues 

Under the Sea, 1873) by Jules Verne (appearing in installments from March 1869 to June 1870; published 

as a book in 1871), a novel that in the activities of Captain Nemo allegorizes the 19th century passion for 

discovery and the hypostatized unknown worlds within the known world. The name of this figure, who 

operates as hinge between the worlds, recalls the figure of Odysseus in Homer’s Odyssey, and thus 

that world-wanderer who in the episode with the Cyclops identifies himself verbally as Nobody, which 

leads to the paradoxical result that Nobody gouges out the eye of the Cyclops. For a formalization of the 

poetic literature of Stéphane Mallarmé and especially his late work, see Un coup de dés jamais n’abolira 

le hasard (1897), which activates as literary elements the sheet and the blank areas between the letters 

via typography and the layout of the page, and thus reflects on the material conditions of writing and 

literature as well as of reading. For a literature that makes use of methodological analogies to the 

sciences, see the cycle of novels Les Rougon-Macquart (1871 –1893) by Émile Zola (with reference to 

heredity) and Paul Valéry’s texts on Monsieur Teste, which attempt a physiological and psychological 

modeling of consciousness (first text: La Soirée avec Monsieur Teste, 1896).
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turalist concept of dimension is that this is conceived rather simply, since, as in the 19th 

century, it denotes a direction of Euclidean space: that is, length (dimension 1), width 

(dimension 2), and height (dimension 3). This concept of dimension is expanded only 

insofar as it is now understood more abstractly as the degree of freedom of movement 

or of a particular position. Although in the early 20th century mathematics increasingly 

diversifies and complicates the concept of dimension (for example in Hermann Minkow-

ski’s concept of space-time from 1907 –1908, the Hamel dimension in a vector space 

from 1905, and the so-called Lebesgue covering dimension or topological dimension 

of the 1930s), the general understanding of dimension remains relatively conventional, 

since it is still basically oriented to the three dimensions of Euclidean space. The fourth 

dimension in this general understanding is primarily identified – at the latest, since the 

popularization of Albert Einstein’s special and general theory of relativity (published in 

1905 and 1915 respectively) – with time, while both space and time are understood as 

relative values dependent on gravity (or matter). For Abbott and his contemporaries the 

fourth dimension in contrast was of a radically unknown nature, and as invisible as the 

third dimension for the two-dimensional beings in Flatland. This can be gathered from 

the remarks of the (fictitious) two-dimensional author A Square quoted in the preface 

to the second edition by the anonymous editor:

“It is true that we have really in Flatland a Third unrecognized Di-

mension called ‘height,’ just as it is also true that you have really in 

Spaceland a Fourth unrecognized Dimension, called by no name at 

present, but which I will call ‘extra-height.’ But we can no more take 

cognizance of our ‘height’ than you can of your ‘extra-height.’”6

Hence, the experience or attribution of dimensions is not self-evident, but historically 

determined. In the following an episode of contentious dimensionality in structuralist 

analyses of writing and narration from 1966 to 1972 will be reconstructed and critically 

contextualized through references to the time-bound materiality of writing and narration in 

the book, and in this context to implicit and explicit “dimensional prejudices” (as Abbott 

would call them).7 Here, the trickster position between the dimensions is assigned a 

material operation from book production: the fold.

6 Anonymous 1884, X. In the logic of the narrative and paratext, the author A Square is imprisoned in his 

homeland Flatland for asserting a third dimension, because he is not able to show either how this could 

be measured nor what direction it opens up. Accordingly, his cohabitants are prejudiced or lacking in faith. 

See ibid, XII.

7 Ibid.
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Dimension 1

In 1966 no. 8 of the journal Communications appeared with contributions by among others 

the philosopher and semiologist Roland Barthes, the literary theorist Gérard Genette, and 

the philosopher and semiologist Tzvetan Todorov.8 The issue focused on the theory of 

literary narrative, and the contributions by the above-named authors have in retrospect led 

to this issue of Communications being perceived as the “founding document of a ‘French 

school’ of structural analysis of narrative”9 – whereby the “tentative profile”10 set out in 

the issue was expanded on in later texts. In his contribution Barthes names structuralism 

as a framework and method when he separates narrative from its diverse “vehicles” 

(language, image, gesture, etc.) to explain the thus won universal fact of narrative via “an 

implicit system of units and rules.”11 Barthes is concerned with the hypothetical creation 

of a generally valid “structure of narrative,” which he also describes as a “code,” one that 

the narrator is aware of and able to activate.12 For the planned scientific deduction of the 

narrative structure, Barthes draws (as do the structuralists in general) on the model of 

linguistics, since this attempts to come to grips with the variance of languages via the 

concept of the sign and, in the phonology of Roman Jakobson and Morris Halle, via the 

identification of a universal binary system of twelve distinctive features (Fundamentals 

of Language, 1956). The structuralists’ understanding of structure is influenced by the 

concept of code found in information theory – similar to biology’s integration of the 

concepts of code and program already from the 1940s to the 1960s. The promise of this 

methodological decision lies in the attainment of a universal and formal systematics that 

is able to reduce a multitude of isolated phenomena to a few elements and the rules for 

their combination. In her historical investigation Who Wrote the Book of Life, Lily E. Kay has 

shown in detail how after World War II biology adopted the concepts of information and 

code from information theory into biology, which in genetics became driving metaphors 

that were able to bring together different lines and approaches of research, and eventually 

contributed to the molecular biological deciphering of the genetic code.13 Here, right 

from the beginning, the concept of code was linked to the concept of writing, since the 

genetic code is understood as a transcription – that is, the regulated transcription of a 

particular sequence of base pairs (i.e. genetic information) contained in DNA into a 

nucleotide sequence of the RNA strand, as well as the subsequent translation into the 

amino acid sequence of a protein. The analysis of this genetic writing hypostatized as 

8 See Barthes 1966; Todorov 1966; Genette 1966. In the following, quoted from the English translations.

9 Vogt 1998, 300.

10 On the status of the contributions gathered in Communications no. 8 as a “tentative profile” for the 

searched-for structural theory of narrative, see Barthes 1975, 243.

11 Ibid, 237 and 238.

12 Ibid, 238, and for the equation of structure and code 238, footnote 2.

13 See chapters 2 and 3 in Kay 2000.
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universal – thus, one that is principally the same in all known living beings – seemed to 

make it possible finally to decode the ‘book of nature’ (another, though earlier, metaphor).

Such ambitious ideas also took hold in French structuralism and especially the structural 

analysis of narrative in Communications no. 8. In his search for universal structures Barthes 

dissolved the boundaries of narrative both temporally and spatially, and he also naturalized 

it in order to subject it to the same fate experienced by the manifold phenomena of life 

in the concept of the genetic code: “narrative remains largely unconcerned with good 

or bad literature. Like life itself, it is there, international, transhistorical, transcultural.”14 

The thus prepared fact of narrative should be reduced to a few elements and understood 

in analogy to the largest unit of linguistics, the sentence: “a narrative is a large sentence, 

just as any declarative sentence is, in a certain way, the outline of a little narrative.”15 Thus, 

only now, after the preparation of the object of knowledge by means of generalization and 

structural reduction, does Barthes identify elements and rules. While all the theorists 

in Communications refer to slightly different elements, all adhere fundamentally to the 

concept of a linguistic sign and to grammatical categories of the sentence and verb 

conjugation in linguistics. In Genette’s case this orientation leads – in the elaboration 

of his narrative theory in Discours du récit (1972) – en passant to a rigid determination of 

the direction of the narrative and thereby to the allocation of a dimension. In its written 

form (here, Genette partly revokes Barthes’s forgetting of the “vehicle”) narrative thus 

belongs to an order of successivity; that is, it should be understood as a coded sequence 

of signs, and prescribes a diachronic reading. The dimension of written narrative is 

linearity (dimension 1), and its measure is found in the time of reading. Hence, narrative 

“can only be ‘consumed,’ and therefore actualized, in a time that is 

obviously reading time, and even if the sequentiality of its components 

can be undermined by a capricious, repetitive, or selective reading, 

that undermining nonetheless stops short of perfect analexia: one 

can run a film backwards, image by image, but one cannot read a text 

backwards, letter by letter, or even word by word, or even sentence 

by sentence, without its ceasing to be a text. Books are a little more 

constrained than people sometimes say they are by the celebrated 

linearity of the linguistic signifier, which is easier to deny in theory 

than eliminate in fact. […] [P]roduced in time, like everything else, 

written narrative exists in space and as space, and the time needed 

14 Barthes 1975, 237.

15 Ibid, 241. Literature is equated by Barthes with language and only as a consequence of this equation can 

linguistic analysis serve as a model for a universally valid analysis of narrative. Fundamental for such an 

analysis of narrative oriented to linguistics is then the code, which means that in the narrative nothing is 

accidental, but everything coded and therefore explainable via structure or organization.
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for ‘consuming’ it is the time needed for crossing or traversing it, like 

a road or a field.”16

Thus, for Genette written narrative exists in three-dimensional space, but is itself strictly 

one-dimensional, and precisely in this way available to a structural analysis, insofar as 

the stream of text (a string of linguistic signs) relates to universal laws of language. Such 

equations of writing and linearity, which are typical for structuralism, were criticized by 

Jacques Derrida in De la grammatologie (Of Grammatology) already in 1967 (thus, a year 

after the papers in Communications no. 8 and five years before Genette’s elaboration of his 

narrative theory). Derrida’s neostructuralist position introduces historical relativizations 

and philosophical subversions into the structuralist analysis of speech and writing.17 In 

his project of a liberated “science of writing – grammatology” (writing understood in a 

general sense as inscriptions of all kind, and thus as grammè or graphs), he traces the 

“false evidence” that determines the long history of writing.18 This includes particularly 

the orientation of writing to spoken language and a model of presence, since this ori-

entation leads to a focusing on a phonetic writing and overlooks other forms of writing 

(ideographic writing, knot writing, etc.), or entails the degradation of cultures “said to 

be ‘without writing.’”19 Also the “production of the linear norm” (for which Genette 

is responsible in an exemplary way, but not alone) is for Derrida the expression of an 

approximately four-thousand-year-old ideology that should be corrected in the proposed 

science of grammatology via a liberated and radicalized concept of writing by among 

other things invoking the pre- and parallel histories of nonlinear writing.20 Derrida’s 

critique outlines something that could be described with Abbott’s words as “dimensional 

prejudices” – namely, an absolutized linearity of writing (and its unreflected relation to 

a conventional concept of temporality). The supposed universality of linear writing is 

countered by Derrida with its historical relativity: “The ‘line’ represents only a particular 

model, whatever might be its privilege. This model has become a model and, as a model 

16 See Genette 1980, 34 (unless otherwise noted, emphasis in the original). Here, Barthes is more cautious 

and combines the analysis of the syntactic order of the sentence with the consideration of a paradigmatic 

order (in the sense of linguistics: syntagmatics and paradigmatics), which undermines the linearity of 

the stream of text in the narrative. See Barthes 1975. For the usual equation of writing and alphabetic 

writing and finally linearity, see a recent publication on the history of writing and the book, Funke 1992, 

13 – 28.

17 Structuralism (e.g. Todorov, Genette, Barthes) and neostructuralism (e.g. Derrida, Michel Foucault) 

do not only overlap temporally, but are also to be understood content-wise as networked and 

complementary positions – the term poststructuralism masks this connection. See Dosse 1991 –1992.

18 Derrida 1976, 4 and 81.

19 See ibid, 83: “Actually, the peoples said to be ‘without writing’ lack only a certain type of writing. To 

refuse the name of writing to this or that technique of consignment is the ‘ethnocentrism that best 

defines the prescientific vision of man.’”

20 One of the representatives of this writing ideology criticized by Derrida is the linguist Ferdinand 

Saussure (see ibid, 86).
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it remains inaccessible.”21 In the course of his deconstruction of phonetic writing, he 

not only reconstructs the history of this ideology, but also recalls those elements that 

constantly endangered the linear norm, including the “discreteness” and “spacing” re-

sulting from the respective storage media.22 These moments of crisis of linear writing 

should now – beyond Derrida – be explicitly taken up again by describing the material 

condition of writing (and narration) in the book: that is, the two- and three-dimensionality 

of writing in codex and bound book neglected by structuralism.

Dimensions 2 and 3

If one wants to illustrate the hypostatization of linear writing criticized by Derrida with 

a book medium, then the bound book produced since the 15th century is not strictly 

speaking the best choice. It seems more appropriate to illustrate linearity with media 

such as Egyptian, Greek, and Roman scrolls, which – after the appropriate material 

(papyrus or leather) had been found – with their maximum length of roughly six meters 

(a book format of the time; today more like a chapter) permitted the writing down of 

corresponding text lengths, and due to their rolling technique prescribed a relatively clear 

reading direction. Other material supports such as clay shards or tablets made possible 

mostly only shorter entries, or had to be provided with short inscriptions along the lower 

edge (colophons) to indicate their relation to a larger set of tablets. The codex developed 

out of the wooden (or wax) tablets that already could be bound with leather straps to 

form diptycha, triptycha, or polyptycha, so that the writing material (papyrus, parchment, 

and, after the 11th century when it was imported to Europe, also paper) was no longer 

glued together to form a roll, but folded after the model of polyptycha to form a section, 

so that subsequently a number of sections could be bound together. That increased 

manageability by making it possible to include longer manuscript texts and entries in 

one codex.23 The beginning of the use of paper in western Europe in the 11th century, the 

production of paper beginning in the 13th century, and finally, beginning in the second half 

of the 15th century, the invention of printing with type, which with the invention of new 

type-casting methods became easier to produce, led to a considerable acceleration in 

book production. According to current research on the history of the book, for the second 

half of the 15th century one can suppose a total production of approximately 15 million 

21 Ibid. On the binding of the linearity of language and writing to “this vulgar and mundane concept of 

temporality (homogeneous, dominated by the form of the now and the ideal of continuous movement, 

straight or circular),” see ibid. This concept of time rejected by Derrida is at the basis of Genette’s 

remarks on the temporality of reading.

22 Ibid.

23 On the history of the clay tablet, scroll, and codex, see Funke 1992, 66 –71. On the success of the codex, 

see ibid, 70. Editions of the Bible are known in codex form already in the 1st century; editions of Homer 

and Virgil date from the end of the 1st century; from the 4th century onwards the codex gradually replaced 

the scroll.
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books – however, mass production in the modern sense only arose with the invention of 

paper machines, folding machines, typesetting machines, industrial type-casting methods, 

and high-speed presses at the beginning of the 19th century.24

As a storage medium for longer texts the codex does not immediately align itself with 

the scroll. On the one hand, the continuous format of the scroll is now divided up into 

square and, later, rectangular pages, which present a specific quantity of text as in a 

frame. This type of discrete page is partly anticipated in the scrolls to the extent that 

here the text is entered in columns whose line length is initially oriented to the form of 

the Greco-Roman hexameter, so that not only each column, but already each line can be 

understood as a verse, and in this way as a discrete unit (to which always the next line or 

column is linked). However, the single page in the codex is not oriented to a metric form, 

but determined only by the storage medium itself, which interrupts the continuity of the 

text. Furthermore, the length of the texts in a codex can be much longer than in a scroll, 

so that the connection between the pages in some circumstance has to continue over a 

considerable length of text. Thus, while the two-dimensional presentation of text in the 

scroll with its line and column breaks can be seen as a minor disruption of the linear 

stream of text, for the codex the two-dimensional presentation of the text on the page is 

grasped more discretely; and in addition through the folding of the paper and the binding 

of the resulting sections a third dimension becomes noticeable that decisively alters 

what can be treated in writing (narratives, laws, science, history, etc.) by grasping this 

spatially. The discrete pages and the spatial sections of codex and book prevent a strict 

linearity of the text; or formulated against the background of the structuralist discussion 

on dimensions, in codex and book the one-dimensionality of writing is supplemented 

by two- and three-dimensionality. This increased dimensionality of the book medium is 

made possible by a practice that initially remains external to the text: the folding of the 

sheet of paper. While wooden tablets have to be bound together using leather straps 

and thus simply added, the wondrous proliferation of the textual space in codex and 

book is the result of a multiplication: that is, a single or repeated folding of the sheet of 

paper to create formats of different sizes (customary is a threefold folding of the sheet to 

produce 16 pages; see fig. 1). The folded sections can then be combined using different 

binding techniques (sewing and/or gluing) to form extensive codices or books, and are 

subsequently trimmed at the edges so that the continuous fold of the paper at the unbound 

but folded outer edges is interrupted to create a sequence of pages that can now be 

leafed through. Folding and trimming thus bring about a two- and three-dimensionality 

of the text in codex and book, and such a bound collection of sheets finally became a full 

totality when after the mid-15th-century printing facilitated and even provoked the creation 

of longer texts; now long textual narratives became quasi-mechanically their own worlds.

24 See ibid, 113, and on industrialization 189 –199.
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In the historical vocabulary of the book manufacturer the fundamental significance of 

the transition to dimension 3 produced by the folding of the sheet of paper has been 

retained to the present day. In the German-speaking world the proper arrangement 

of the pages on a sheet of paper, which ensures that the correct sequence appears in 

the book after folding, is called ausschiessen (imposition). In the etymological volume 

of the Deutsches Wörterbuch von Jacob und Wilhelm Grimm one can read that the verb 

has several meanings, whereby the transitive “einen Wald ausschieszen” (to shoot all 

wildlife in a forest) surely comes closest to the economical utilization of the sheet (with 

no leftover space).25 Nevertheless, one should also consult an intransitive usage, since 

ausschiessen in the sense of prosilire, exsilire, and progerminare (and still more frequently 

schieszen [to shoot]) is also used in relation to plants, and signifies for instance the burst 

of growth in spring, when “die bäume ausschieszen” (the trees put out their shoots).26 

Accordingly, there is an abrupt change in which the plant, suddenly and profusely, puts 

out new shoots. This remarkable plant growth can be compared with the folding of the 

paper sheet, since in effect the threefold fold of a single large sheet after trimming leads 

in one stroke to a 16-page section – the book could be said to burgeon.27 

25 Grimm 1991, vol. 1, cols. 948 – 949, here col. 949.

26 Ibid.

27 Drawing on Barthes’s formulation that narrative like life is simply “there” (cf. above in the main text), 

one could say – with regard to the current state of knowledge on the fundamental importance of protein 

folding for the development of living organisms – that in the eyes of book manufacturers the pages of 

the folded and trimmed book are suddenly there, like life.

Fig. 1: A current example of a 16-page imposed forme. After being folded in the folding machine, the pages 

are arranged in the correct sequence. (Drawings by Bernhard Laufer).
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Also the German term for folding, Faltung (or Falzung), which book manufacturers employ 

for this operation, contains revealing historical connotations. Thus, for bookbinders the 

technical term Falz (fold) means historically “das brechen, zusammenlegen, falten der 

gedruckten bogen” (the breaking, arranging, and folding of the printed sheet), and thus 

includes not only the folding and assembling, but also the “breaking,” which means the 

term implies a discontinuity.28 As a result of the assembling, the Faltung also creates 

a split, which is why the word falte (fold) historically also includes the old meaning 

of an “abgelegenen, eingehegten raums” (remote, enclosed space).29 These historical 

meaning variants of ausschiessen and falte already shed light on the new praxis of reading 

demanded by the extended textual space of codex and book. Since, in contrast to the 

scroll, the bound book allows and provokes a leafing back and forth, and thus a looking 

ahead and back, or a random perusal of the book. Each time one turns the page in 

the continuous sequence of pages (shown concretely by the page numbers), what was 

hidden now emerges in the space between the sheets, and can be read on the opened 

page. At the same time, each turning of the page can be deployed and understood as a 

break, since from here one can leaf to any other part of the book, and thereby create a 

new relation. Thus, the successivity of the narrative emphasized by Genette is replaced in 

the practice of reading by a network-like relation between different parts of the narrative, 

since a narrative stored in a book can indeed be read backwards or in a crisscross fashion 

or even only in extracts.30 In practice the discontinuous reading suspends the alleged 

linearity of the text, and it can do this with such ease because the material organization 

of the book (discrete sheets or pages) enables this. Although the fold in the paper first 

brings about the book as totality (in the sense of a whole world), the same fold leads the 

reader to fragment this totality through reading and to disrupt the predetermined order.

Book manufacturers were aware that the folding and binding of the sections did not only 

mean continuity, multiplication, and totality, but also contained the danger of disconti-

nuity and confusion. The problem regarding the imposition (ausschiessen) of the sheet 

of paper was then also to ensure the proper arrangement of the pages to be printed, so 

that in the folded, bound, and trimmed book the pages appeared in the right sequence 

(and also that the grain of the paper was parallel to the spine making the pages easier to 

turn).31 Today, this arrangement is carried out by an algorithm; however, up to the 20th 

century it was common practice to insert the pages into a chase divided according to the 

28 Grimm 1991, vol. 3, cols. 1302 –1303, here col. 1303.

29 Ibid, cols. 1297 –1299, here col. 1298. Other meanings of falte are umschlingung (intertwining), gefaches 
(dividers/compartments), and tasche (pocket), and naturally the falte in a garment, or in the figurative 

sense “falte des herzens, der sinne.” (fold of the heart, the senses). Ibid.

30 At least if one does not take the string of characters as an absolute criterion (as Genette does), but starts 

from units such as page, chapter, and paragraph, while also considering reading and writing practices.

31 On the problems of the division of the page and folding, see Diderot/d’Alembert 1751 –1780, vol. 29, 

Imprimerie en caractères, Planches VI–XII (and the descriptions in ibid., 3 –7); Febvre/Martin 1979, 

68 –71; in relation to the present, Laufer 1988, 65 –71.
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number of pages and folds (see fig. 2), and to make a trial pull, or else to print the pages 

individually, to paste them onto a sheet of paper, and to fold this to make a test copy. 

Without making such tests, the result of the folding would be uncertain; which means that 

with a defective arrangement after printing and folding, while the linearity of the text is 

formally preserved (as a mere string of characters), the meaning of the text is disrupted.

Fig. 2: The illustration from the plates section of the Encyclopédie of Diderot and d’Alembert 

shows a few simple examples of the numerous possible divisions of the page in the chase. 

In the 18th century different divisions were selected depending on the type of paper, folding, 

and binding.
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Of course, the danger of discontinuity linked to the fold can also be made productive. In 

the 1960s the American writers William S. Burroughs and Brion Gysin took printed books 

(by other authors), folded the pages down the middle, and arranged the two halves of the 

page in such a way that a new page with a now hybrid text resulted. This creative writing 

method propagates a folding of folding that at first glance retains the linearity of the text, 

but de facto disrupts and transforms the cohesiveness of the text.32

Fundamental for the printed, folded, and bound book from the 15th to the 21st century is 

therefore not the one-dimensional text, but the spatializing folding, which variably links 

continuity and discontinuity, and from the splitting of the sheets (i.e. the trimming of 

the fold) allows a world to arise. In this formulation of the book and the corresponding 

reading techniques, the text is at least three-dimensional.

Many Dimensions

In De la grammatologie Derrida declared the four-thousand-year-old ideology of linear text 

to be concluded, and in this he included the book: “The end of linear writing is indeed 

the end of the book, even if, even today, it is within the form of the book that new writings 

– literary or theoretical – allow themselves to be, for better or for worse, encased.”33 For 

his diagnosis of the end Derrida draws on the investigations of André Leroi-Gourhan, 

who in 1964 and 1965 published the volumes of Le geste et la parole (Gesture and Speech, 

1993) on language and operativity. Here, the anthropologist recalls those epochs of 

writing in which writing was not organized according to a linear schema, but operated 

in a multidimensional way, and thereby constituted a correspondingly multidimensional 

thought. At the same time, however, Leroi-Gourhan also announces a new development, 

which he describes as a liberating “return to diffuse and multidimensional thought.”34 

32 A comparatively conventional result of this experimental project is the publication The Third Mind by 

both authors from 1978.

33 Derrida 1976, 86. Twenty years later he would revise this estimation in Le Livre à venir (The Book to 

Come; an introduction to a discussion with Roger Chartier and Bernard Stiegler that took place in 1997 

at the BnF in Paris), where he takes up again the question of the book and here ascribes to it a long life, 

one that is, however, subjected to considerable transformations through the material, technical, and 

social practices associated with it. The revolution of the book that he considers here is digitalization, 

which exposes the book to a changed support and changed conditions. As a result, especially the book 

as totality is abandoned (instead, tension between “gathering” and “dispersion”) as is the finalized 

book (the folded and printed book effectively stops and substitutes the writing process of the author). 

However, he already sees this model of the book announced in Mallarmé’s Un coup de dés. See Derrida 

2005, 13. In this book Derrida only briefly comes back to his remarks in De la grammatologie. In his 

earlier diagnosis of the end of the book, he sees the discussion on the book in the digital age already 

implied. With end, however, he means in retrospect simply the end of the codex-book. See ibid, 14f.

34 André Leroi-Gourhan, Le geste et la parole (1965, vol. 2, 261 – 262), here quoted in Derrida 1976, 332f., 

footnote 35.
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And Derrida confirms the significance of this turn that should end the “age of the sign” 

and linearity: “What is thought today cannot be written according to the line and the 

book, except by imitating the operation implicit in teaching modern mathematics with 

an abacus.”35

Surprisingly, Leroi-Gourhan and Derrida’s diagnosis was sparked by two phenomena that 

could also be claimed by the proponents of a linearity of writing. For the anthropologist it 

is magnetic tape and the Dictaphone that has put an end to the dominance of the linearly 

organized textual space in the book; it is therefore a storage of spoken language (which 

served as the basis for the phonetic writing and presence model criticized by Derrida) 

that is evoked here as the return of many dimensions. Derrida, on the other hand, refers 

to the phenomenon of program or genetic inscription, since here writing has no anthropos 

and no intentional consciousness as a source and point of reference, but can vouch for 

the radicalized understanding of writing outlined in De la grammatologie. Accordingly, the 

genetic inscription attests to a “history of the grammè” in which the possibility of human 

writing as human unity in general will have been a mere “stage or an articulation in the 

history of life.”36 To the extent, however, that particularly genetic inscription might be 

understood also as evidence of a universality of the writing paradigm, it is still possible 

to detect with regard to Derrida an interface to the ideology of linear writing.

However, a three-dimensional writing (and a corresponding thought) can also be observed 

before the invention of magnetic tape and Dictaphone, and this applies beyond the prac-

tice of reading. The printed and folded book is accompanied by another writing practice 

insofar as the finalized book is eventually chopped into parts again through reading 

and excerpting, and these parts can be recombined by means of writing to form a new 

entity. Decisive for this is the invention of the card index, which encourages this reading 

and writing activity. In the 16th century scholars such as the polymath Konrad Gessner 

attempted to filter their reading by excerpting the text on small pieces of paper – the 

precursors of index cards – and in this way to channel these excerpts in a new direction 

from a particular perspective. Thus, through reading, the totality of the book is broken into 

pieces, the searched for passages recorded on discrete paper formats (excerpted), and 

then in further acts of reading and writing (in some cases initially in the form of additional 

notes, also on index cards) combined to form new connections from which a new book 

might arise. The three-dimensional card index (folders, cases, boxes, or whole cabinets 

with draws for the cards) brings these notes into a constellation that can be differently 

organized (according to area of knowledge, the subject, or idiosyncratic perspectives) 

35 Derrida 1976, 87. On the “age of the sign” as an ideology, see ibid, 14. See also Barthes’s cautious 

relativization of the structuralist claim to universality, when in his text Sémiologie et Médecine from 1972 

he likewise asks about a possible “ideology of the sign.” See Barthes 1988, 212. Historical relativity and 

the diachronic level returned to structuralism at the beginning of the 1970s.

36 Derrida 1976, 84.
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and thereby from book reading to book reading gradually expanded and altered. Unlike 

in a book, however, index cards are not placed in a fixed and closed succession, but like 

playing cards retain a fundamental mobility (they can be repositioned and expanded) 

as well as the potential of recombination (insofar as the individual cards can at any time 

be recombined to form new relations).37

While in his experiments with systems of note taking, Gessner basically still follows 

the idea of a topical, sorted, and closed order of knowledge, one that is not oriented to 

originality and innovation, since the modern period in philosophy, the sciences, and the 

arts, an awareness formed for the eventful, human-made new which leads to the desire 

for its repetition.38 This search for innovation is reflected in all areas of culture and leads 

eventually to a radical temporalizing of scientific, philosophical, artistic, and technological 

production – the horizon of knowledge is open. Under these conditions the card index 

developed into a favored means of administrating the increasingly vast knowledge of the 

accelerated book production and to create the sought-after new knowledge. At the same 

time, the practice of note taking is gradually differentiated into a diversely characterized, 

but also increasingly theorized method, so that at the beginning of the 20th century it 

was propagated as a universal technique, and the production of card indexes could be 

standardized.39 The card-index method now fulfilled administrative tasks in bureaucracies, 

accounting departments, and libraries, but also characterized the writing processes of 

scientists and artists (see fig. 3), before being replaced everywhere by computers and 

the possibilities offered by these.40

37 See Krajewski 2011; Zedelmaier 2002.

38 On this change, see Blumenberg 1996. On the relation between card index file and evolution of 

knowledge, see Kammer 2009.

39 Here, writing with the help of the card index follows the method of scholarly excerpting (selection, 

summary, sorting, and storage), which it effectively radicalizes. On these principles of scholarly 

note taking, cf. Blair 2004. Note taking is initially subordinated to excerpting and theorized and 

professionalized as an independent technique only late. In the 18th century the technique becomes 

evident among other places in the descriptions of the jurist Johann Jacob Moser, to which the writer Jean 

Paul refers in his own practice of note taking. There are also early warnings of the dangers of the card 

index, for instance that this form of note taking (Verzettelung) leads to a getting lost in the details (sich 

verzetteln), and thereby no longer leads to the production of cohesive texts. 

40 Among scholarly users of card index files of the 20th century one could name Roland Barthes, Michel 

Foucault, Hans Blumenberg, Niklas Luhmann, Arno Schmidt, and many others. For illustrative examples, 

see the exhibition catalogue of Gfrereis/Strittmatter 2013. On the order and use of the card index in the 

writing practices of Blumenberg, Luhmann, and Schmidt, as well as the related book production, see 

Krauthausen 2013.
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The meaning of this writing practice, which accompanies the printed and folded book, 

was elucidated in 1928 by Walter Benjamin, when he notes that the “card index marks the 

conquest of three-dimensional writing.”41 The philosopher’s remark makes reference to 

the spatial dimensions of the furniture that the card index concretely is, and that conditions 

it both materially and as medium, insofar as the mobile three-dimensional correlation of 

the index cards expands the dimensionality of writing.42 What counteracts the linearity 

of writing in this case is not only the caesura brought about by a new medium, but a 

changed practice of reading and writing, which in turn is made possible by the changed 

material disposition of the book. 

What, however, can be concluded from this description of the many dimensions of writing 

in the book and card index? Basically, a relation to the book as set out by Derrida against 

the background of his diagnosis of the end of the book:

41 Benjamin 1979, 62. Benjamin refers explicitly to the fact that at other times and in other cultures three-

dimensional textual media had already existed, for instance in runes and knot writing.

42 If one considers the mobility of the cards and the open-endedness of the card index, then one should 

also add the temporal dimension. Accordingly, the card index would establish a four-dimensional writing.

Fig 3: The photograph by Friedrich Forssman shows part of the vast card file (approx. 120,000 small pieces of 

paper) that the writer Arno Schmidt created in the 1960s for his novel Zettel’s Traum.

.
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“It is less a question of confiding new writings to the envelope of a 

book than of finally reading what wrote itself between the lines in the 

volumes. That is why, beginning to write without the line, one begins 

also to reread past writing according to a different organization of 

space.”43

In this sense, it is praxis that breaks open the (structuralist) ideology of the linearity of 

writing. And it should be added that, strictly speaking, this had long been carried out 

by praxis: on the one hand, insofar as the practice of folding the paper sheet contained 

the possibility of many dimensions of writing; on the other, insofar as the accompanying 

practice of a discontinuous and spatializing reading (or such a writing) realized a potential 

inherent to the material conditions.44

 Translated by Ben Carter

43 Derrida 1976, 86.

44 See in this connection also Barthes’s considerations on the meaning of praxis, since this escapes the 

endless chains of signifiers of (clinical) signs and establishes a meaning through simple hermeneutics, 

which then determines the further operating. Barthes 1988, 210.
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Angelika Seppi

Simply Complicated: Thinking in Folds 

I) “Trying to see the grass in things and words”

“Those things which occur to me, occur to me not from the root up but rather only from 

somewhere about their middle”, Franz Kafka writes in his Diaries and continues: “Let 

someone then attempt to seize them, let someone attempt to seize a blade of grass and 

hold fast to it when it begins to grow only from the middle.”1 In A Thousand Plateaus 

Gilles Deleuze and Félix Guattari pick up the thread and confirm that it is “not easy to 

see things in the middle, rather than looking down on them from above or up at them 

from below, or from left to right or right to left: […]. It is not easy,” they write, “to see 

the grass in things and in words […].”2 Trying to see the grass in things and words, to 

perceive of things and words in their becoming, is one of the many devices Deleuze and 

Guattari adopt to designate the main direction of their shared philosophical endeavor. 

Their multifaceted philosophical journey unfolds throughout a lifetime of thinking and 

writing, relentlessly stepping into new and uncertain terrain. All the elements constituting 

the open totality of their work resonate in an overall pursuit of an affirmative theory of 

multiplicity, difference and becoming. While multiplicity, difference and becoming are 

anything but novel philosophical concepts, it is their unconditional affirmation, which 

constitutes a departure from what has been labeled, since Friedrich Nietzsche, the 

underlying negativity/nihilism, which informs western thought from Socrates to Hegel 

and beyond. From Plato onwards – that is how the thread of European philosophy is 

traced by Nietzsche and weaved further by Deleuze and Guattari among others – the 

triumph of thought over life is synonymous with the triumph of the intelligible over the 

1 Kafka 1948, 12.

2 Deleuze/Guattari 1987, 44.
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sensorial, of the ideal over the material, of the one over the multiple, of identity over 

difference, of being over becoming.3 

The paper develops the fold as a counter-figure and a counter-concept to any such 

dichotomous overlay. Taking as its point of departure Jacques Derrida’s notion of the 

undecidable that resists and disorganizes philosophy’s binary order from the very inside 

of the philosophical text itself, the paper pursues the fold as an exemplary figure of the 

logic of the supplement accordingly developed. By doing so the fold is further traced in 

its etymological links, its conceptual lineage and its material manifestations, and along 

the aesthetic riddles it poses. The abundance of terms, such as simplicity, complexity, 

implication, explication, application, multiplication – all of whom etymological derivations 

of the latin plicare (to fold), plectere (to plait, twine), following the greek plékein (to plait, 

to weave) – serves as an initial indicator to the degree to which our language and thought 

are permeated by folds and processes of folding. Regarding their material manifestations, 

they stretch out from the folds of drapery to the folds of living tissue, from the diptychs of 

antique tablets and reliefs to the explicit or implicit diptychs of painting, from book-folds 

to present-day folded Note-Books, from the art of folding paper to foldable architecture, 

from biological processes such as invagination or protein-folding to René Thom’s famous 

morphological catastrophes. Correspondingly broad is the span of disciplines, within and 

beyond their limits – the fold extends itself, from philosophy to mathematics, biology, 

physics and chemistry, from the arts to art history, and so on. 

Touching upon a variety of viewpoints, Gilles Deleuze’s work The fold. Leibniz and the 

Baroque will figure as a thread weaved through the arguments developed in this paper. 

The guiding image will be provided by the Leibnizian-Deleuzian allegory of the Baroque 

house of thought – an allegory of the single, virtual plane that unfolds both the pleats 

of matter and the folds of the soul. (fig. 1) According to Deleuze, the world in general – 

encompassing the virtual plane that is unfolded through the pleats of matter and the folds 

of the soul – thus becomes comparable to an infinitely folded curve that extends to infinity.4 

Regarding the fold’s complexity, the question arises, whether and how a comprehensive 

concept of the fold is possible at all. To develop a philosophical concept of the fold is 

certainly what Deleuze attempts to do in his reading of Leibniz. To retrace Deleuze’s 

attempt to conceptualize the fold, will thus form the main focus of this paper. Finally, 

thinking in folds will be evoked as an attempt to re-conceptualize the distributions that 

constitute our world from the point of view of their becoming. With Deleuze and Derrida 

3 A generalization such as this is merely provocative, of course, so that if ever there was any truth to the 

famous quip by Alfred North Whitehead, maintaining western philosophy to be no more than a series 

of footnotes to Plato (Whitehead 1978, 39), this series would have to comprise the countless attempts, 

dating as far back as Plato himself, to counter Platonism and its underlying dichotomous structures. 

4 Cf. Deleuze 1993a, 24.
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I will conclude the arguments presented in this paper by indicating an essential non-being 

and not-being-now that subverts the commonly assumed positivity and presence of being. 

II) Where does a fold begin and where does it end?

In his attempt to further advance a critique of western metaphysics Derrida pointed out 

not only to the hierarchical and dichotomous structure informing western metaphysics 

– presence, truth, identity or unity being prioritized over absence, error, difference or 

multiplicity – but also to the ambivalences lying at its core. Let us take, as an example, 

Derrida’s famous reading of Plato’s Phaedrus 5. The dialogue between Socrates and 

Phaedrus moves from an initial query concerning love, to a discussion on the merits of 

speech in contrast to writing. It comes as no surprise that Socrates – digressing into 

the myth of Thoth, who figures as the inventor of the so called pharmakon of writing 

– condemns writing while positing direct speech as the only proper vehicle of truth. 

To be sure, Derrida is not concerned with presenting yet another evidence of western 

logo-centrism, but rather with unfolding a complexity intrinsic to the Platonic text itself. 

He points to a double meaning embedded in the text – pharmakon is both a remedy and 

a poison – suggesting the undecidable lies already in the text itself, Derrida explains: 

“It has been necessary to analyze, to set to work, within the text of the 

history of philosophy, as well as within the so-called literary text […] 

certain marks […] that […] I have called undecidables, that is, unities 

of simulacrum, false verbal properties (nominal or semantic) that 

can no longer be included within philosophical (binary) opposition, 

resisting and disorganizing it, without ever constituting a third term, 

without ever leaving room for a solution in the form of speculative 

5 Derrida 1981a, 61 –171. 

Fig. 1: Gilles Deleuze, The Baroque house (allegory).
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dialectics […]. (the pharmakon is neither remedy nor poison, neither 

good nor evil, neither the inside nor the outside, neither speech nor 

writing; the supplement is neither a plus or a minus, neither an outside 

nor the complement of an inside, neither accident nor essence etc.; 

the hymen is neither confusion nor distinction, neither identity nor 

difference, neither consummation nor virginity, neither the veil nor 

the unveiling, neither the inside nor the outside, etc. […]).”6

Derrida’s doubly folded words such as pharmakon, différance, hymen etc., encapsulating 

two contradictory layers of meaning, exemplify a general logic of the supplement, a “nei-

ther/nor, that is, simultaneously either/or”, which persists at the core of metaphysical 

dichotomies themselves, and erodes them from the inside out.7 

Leaving aside, for the time being, the difficult questions concerning the status of terms 

such as pharmakon, différance, supplement or hymen (are they textual emblems of an 

overall logic of compounded difference, is the difference they set at play also textual, 

how do textual emblems and differences relate to a non-textual exteriority, is there 

indeed any so-called outside to the text at all?), I will focus instead on the fold as a case 

study for the differentiation implicit to the logic of the supplement. What is folded now 

operates neither as a plus nor as a minus, neither in addition to nor as a subtraction from 

what has already been folded then. It is both a plus and a minus, both an addition and 

a subtraction. It is neither different from what is, nor the same; rather, it is at the very 

same instance different and the same. It neither reveals nor conceals what has already 

been folded; rather, it both reveals and conceals. Imagine, for example, an ordinary sheet 

of paper lying on a desk. As it is being folded, the sheet of paper both increases when 

considering the dimensions of the embedded space and reduces when considering the 

space it occupies on the desk. It is still the same sheet of paper – nothing has changed 

with regard to the paper’s chemical composition – yet it is quite different; everything 

has changed when considering the space it embeds and the space it is embedded in. 

Furthermore it not only preserves some of its main features, it also stores the potential 

energy of the process of transformation it underwent. It thus reveals itself as its own 

present and past. It also reveals other aspects, invisible up until folded, its bottom 

surface, for example, or flexibility, while repressing others, its former top surface, for 

example, or its full extension. As another example, consider the fascination invoked by 

the flow of drapery, the loose sagging of folds, manifest in Greek plastics and onwards in 

contemporary fashion, with its unresolved, ongoing play of veiling–unveiling the enveloped 

body. Johann Gottfried Herder in Some observations on Shape and Form from Pygmalions 

Creative dream reflects at length on the interplay between clothing and unveiling. How, 

6 Derrida 1981b, 43.

7 Ibid.



 Simply Complicated: Thinking in Folds 53

Herder asked, could the Greek artist “clothe in such a way that nothing is hidden? Could 

he drape a body and yet allow it to retain its stature and its beautiful rounded fullness?”8 

Wet drapery was the answer. Only wet drapery made it possible to clothe, without veiling 

the body, so that drapery became, in art, what was impossible for it in actuality, a “so 

to speak drapery, a cloud, a veil, a mist.”9 Herder’s reflections hinge on a distinction 

between the deceptive character of wet drapery, a “so to speak drapery, a cloud, a veil, 

a mist. […] so to speak, just as Homers gods possess blood only so to speak,” and the 

“fullness of the body,” which in his eyes remains “the very essence of sculpture, and not 

merely so to speak.”10 With Nietzsche, however, the fullness of the body had become 

synonymous with the veil itself. Hence his praise for the old Greeks: “Oh, those Greeks! 

They knew how to live. What is required for that is to stop courageously at the surface, 

the fold, the skin, to adore appearance, to believe in forms, tones, words, the whole 

Olympus of appearance. Those Greeks were superficial – out of profundity.”11 Already in 

its naive manifestations – a folded sheet of paper, the sagging of folds in drapery  – the 

fold attests to what have been and still are almost unthinkable in western philosophy: 

a difference beyond oppositions, unities of simulacrum rather than binaries of truth, 

superficiality out of profundity. 

Against this backdrop, in what follows, I will attempt to delineate the extent to which 

thinking in folds both allows us and obliges us to re-conceptualize that which we typ-

ically signify using dichotomous dyads: one and many, subject and object, existence 

and essence, form and matter and so on. Within all unities of simulacra evoked by the 

fold – difference and identity, addition and substitution, veiling and unveiling, unity 

and multiplicity, inside and outside, open and closed – what interests me most, is the 

double-bind along which Deleuze develops the fold as both the impersonal machinist of 

the endless process of becoming, and the final cause of enclosure and finitude. On the 

one hand the fold will thus be described as a pure, dimensionless event that falls out of 

time and space, preceding every specific entity and the world in general; on the other 

hand the fold will figure as the curve enveloping this or that specific series of events or 

the world as an infinite curve in general. Is it still the same fold at both its ends? Where 

does the fold begin and where does it end? How to account for a world that is both given 

to an infinite process of becoming and is expressed by finite phenomena? How does the 

finite enter the infinite? It is in pursuit of these questions, that Deleuze, in his later writings, 

turned to the fold and to an affirmative reading of Leibniz, albeit in his earlier writings 

8 Herder 1778b, 50.

9 Ibid, 51. In the german original it reads: “Das Kleid wurde in der Natur, was es in der Kunst nicht seyn 

kann: gleichsam ein Kleid, ein umhüllender Nebel.” Herder 1778a, vol. 8, 137. 

10 Herder 1778b, 51. 

11 Nietzsche 1882, 38. 
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he was less sympathetic towards the so-called last polymath of European philosophy.12 

To reiterate, the double-bind develops along two complementary trajectories, a genuine 

differentiation, giving raise to the endless production of difference, and the differentiated 

as the finite product inevitably hiding the process of production it underwent.13 As I will 

argue throughout, unfolding was Deleuze’s final turn of phrase for the pas de deux, in 

which differentiation takes place while its very taking place is already covered over by 

the differentiated itself. 14

III) What kind of dress for which kind of thought?

In her Neo-Baroque novel Rachels Röckchen, Charlotte Mutsaers develops the protag-

onist’s portrait in a metaphorical gown vividly unfolding in numerous twists and turns. 

The gown’s folds are described as dangling around Rachel, as spinning, wiggling, welting, 

blazing, flattering, crawling upon her, shimmering, crinkling, sweeping, dancing, curling, 

murmuring, rustling, flowing, flickering, swinging, winking, puffing up or collapsing: “the 

way all the folds are continuously branching out, ditching themselves or transiting from 

one to the other, and the way, once in a while, you catch a glimpse of what, lonely and 

clandestine, is happening in between or even underneath, is all that counts.”15 In The 

fold Deleuze on his part develops the texture of Leibniz’s garment in its vivacious folds 

with their uncountable curves, swerves and inclinations. With one exception: Deleuze 

is not concerned with what transpires underneath the play of folds, but merely with 

what happens in between the folds. The fold in itself, as I will attempt to demonstrate, 

renders superfluous any attempt at depth beyond the surface. For what is the fold, but 

a paradoxical figure of transition between surface and depth? 

Before discussing Deleuze’s concept of the fold in detail, a few notes on his style are 

in order. Deleuze has explicitly pointed out the role which style plays for him within 

philosophy: “Becoming stranger to ones self, to ones language and nation, is not this 

the peculiarity of the philosopher and philosophy, or their style or what is called a 

12 In Spinoza et le problème de l’expression Deleuze compares Spinoza’s and Leibniz’s anti-Cartisianism 
(Deleuze 1968). In Difference and Repetition Leibniz is portrayed, together with Hegel, as the philosopher 

of infinite representation. In Deleuze’s critique of representation, Leibniz’s philosophy is criticized, 

although a more affirmative tone concerning Leibniz’s notion of vicediction is present as well. In 

relation to the notions of vicediction and compossibility, Leibniz once again plays an important role in 

another example of Deleuze’s earlier work Logique du sense (1969). A systematic exposition of Leibniz’s 

philosophy is ultimately presented in The fold. Leibniz and the Baroque. Deleuze’s engagement with 

Leibniz can also be traced throughout his lecture series at the University of Paris in 1980 and in 1986/7. 

Cf. Lærke 2015, 1194 – 96. 

13 Cf. Deleuze 1994, Chap. IV, Ideas and Synthesis of Difference, 168 – 221, especially 209 – 210.

14 The French expression pas de deux plays with the ambiguity implicit in pas, oscillating between negation 

and step. 

15 Mutsaers 1997, 14 (trans. A.S.).
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philosophical gobbledygook?”16 As Deleuze and Guattari clarify in What is Philosophy? 

style has nothing to do with rhetoric, and everything to do with “sensations: percepts 

and affects, landscapes and faces, visions and becomings.”17 Style can thus be said to be 

the ever-singular manner by which philosophy as the art of creating concepts encounters 

its outside, the non-philosophical, the non-conceptual, the un-thought, the power that 

befalls thought and forces it to think. It is the ever-singular manner by which the outside 

of thought is folded into its very core and the duplicity of inside and outside finds itself 

reinforced in as far as style manifests itself as thought’s very own garb. It goes without 

saying, neither thought nor language are ever truly naked. It goes without saying, there 

is no substantial body waiting to be unveiled under their dresses and drapes. Along the 

undisciplined style characteristic to Deleuze’s writing The fold demolishes the common 

practice of a well-defined line of investigation and deals with folds in all their possible 

extension reaching from the folds as cosmic events to the infinite curve of the world, 

from the folds in and of mathematics to the folds in and of the arts and philosophy, from 

the Baroque to postmodernity, from Leibniz to Whitehead, from Caravaggio to Pollock 

etc. Thus, The fold is certainly not to be conceived as yet another scholarly exploration 

of Leibniz’s philosophy, though it undoubtedly grants novel, unexpected insights into 

the latter. It is first and foremost an attempt to develop a philosophical concept or an 

aesthetic of the fold. And it is the fold along which the conceptual portrait of Leibniz 

is drawn. Just as in a drawing or a painting, the art of the portrait is not a matter of 

producing the closest possible likeness of the sitter, but the production of the resem-

blance itself.18 Far from suggesting a sober, clinical reproduction, Deleuze’s strategy of 

a conceptual portrait implies a transformation of both sitter and artist, in this case, a 

type of becoming-Deleuze of Leibniz as well as a becoming-Leibniz of Deleuze. At times 

it might be hard to tell apart, which point of view is at present under consideration, is it 

Leibniz’s or Deleuze’s? Perhaps after reading The fold both perspectives have become 

more obscure, while at the same time the concept itself has gained in distinctness.19 In 

any event, to whom does a concept belong?

The common alignment that holds together both sides of the Leibnizian-Deleuzian be-

coming is the line itself, a special kind of line – a curved, or what amounts to the same, a 

16 Deleuze/Guattari 1994, 110. 

17 Ibid, 177.

18 Cf. Deleuze 1993b, 197.

19 As Deleuze argued in Difference and Repetition, in reference to Leibniz and his famous example of the 

murmuring sea, “distinct-obscure” or “confused and clear” are far more promising couplings than Descartes’s 

“distinct and clear”. “Confused and clear” and “distinct and obscure” are both called for in philosophy: the 

former as an Apollonian distinction regarding the “whole noise” of the sea and no longer being able to account 

for the little perceptions constituting it, the latter as a Dionysian distinction regarding the little perceptions and 

no longer being able to account for the “whole noise”: “However, the two never unite in order to reconstitute 

a natural light. Rather, they compose two languages which are encoded in the language of philosophy and 

directed at the divergent exercise of the faculties: the disparity of style.” Deleuze 1994, 213. 
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folded line.20 Throughout his work Deleuze is breaking away from a certain paradigm of 

linearity, just as another kind of line undeniably keeps informing his thought. His writings 

abound in lines: “lines and speeds” is the magic formula of A Thousand Plateaus.21 In 

his engagement with Leibniz and the Baroque, a certain point on the line, the point of 

inflection – the point at which a curve changes from negative downward concavity to 

positive upward concavity or vice versa – is crowned a cosmo-genetic element par excel-

lence. Referring to Paul Klee, Deleuze identifies the point of inflection with the formers 

famous Graupunkt, a “point without dimension”, a point “between dimensions”, the 

aforementioned “locus of cosmo-genesis.”22 Thus the curved line – curves and folds are 

employed synonymously, to a certain extent, by Deleuze – essentially becomes active, 

its agent being a point in motion, every motion – an event.23 (fig. 2) 

20 Though Deleuze’s reference to passages, in which Leibniz explicitly uses the terms ‘fold’ or ‘folding’, are 

rather scarce, the fold nevertheless and without a doubt constitutes the main interpretive move both 

for his reading of Leibniz and his understanding of the Baroque. His most important references are to 

Leibniz’s Pacidius to Philaletes (Leibniz 1676, 145); Protogaea (written between 1791 –1793), see Leibniz 

2008, chap. VIII, 20 – 25; Die philosophischen Schriften, see Leibniz 1965a, IV, 481 – 482; VI, § 61, 617; VII, 

453. Deleuze’s intuition, regarding the role the fold plays in Leibniz’s texts, has been affirmed – even 

though Deleuze could not have foreseen that – by later publications out of Leibniz’s oeuvre. Cf. for ex. 

Leibniz 1999, VI, 1401, 1687, 1900. Cf. Lærke 2015, 1197 – 98.

21 Deleuze/Guattari 1987, 4. 

22 Deleuze 1993a, 30. Cf. Klee 1956, 3 – 4. 

23 Cf. Klee 1953, 16. By no means accidental, Klee also portrays the active line as an S-shape in reverse, 

reminiscent of the figura serpentinata, which, particularly in mannerism, played a decisive role with 

respect to the disturbance or distortion of classical forms. Cf. Uhlig 2007, 307.

Fig. 2: Paul Klee, An active line on a walk.
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As the beginning of the world the event of the fold in a way falls out of time and space 

and as such only gives rise to the dimensions and coordinates constituting the quanti-

tative space-time, in which we are moving, practically and theoretically, from one place, 

from one moment, from one topic to another. It is against the backdrop of the event 

that Deleuze breaks with the paradigm of linearity in order to replace one kind of line 

with another – the straight line of the classical age with the curved line or fold of the 

Baroque – a substitution which also exchanges one kind of philosopher for another, and 

thus exchanges two types of reason: René Descartes’s with Leibniz’s. Concerning the 

twofold labyrinth within which both Descartes and Leibniz find themselves wandering, 

“the continuous labyrinth in matter and its parts, the labyrinth of freedom in the soul 

and its predicates,” Deleuze writes:

“If Descartes did not know how to get through the labyrinth, it was 

because he sought its secret of continuity in rectilinear tracks, and the 

secret of liberty in a rectitude of the soul. He knew the inclension of 

the soul as little as he did the curvature of matter. A cryptographer is 

needed, someone who can at once account for nature and decipher 

the soul, who can peer into the crannies of matter and read into the 

folds of the soul.”24

While all straight lines resemble each other, the curved line or fold implies infinite vari-

ation. Every fold takes on a different course, just as no two things – leaves, rocks, rivers, 

drops of water, etc. – are folded in the same way, not one regular fold pervades one 

and the same thing. With Leibniz and Deleuze the fold is everywhere and nowhere the 

same. Hence, the fold must not be perceived as universality, but rather as a universal 

differentiator. From Deleuze’s perspective, it is taking the divergent path, preferring the 

swerve to the straight line that lends Leibniz’s conceptual portrait its specific baroque 

traits. With “inclension of the soul” and “curvature of matter” Deleuze points at the 

main characteristics, which in his eyes allow for an approximation to the Baroque in and 

beyond Leibniz.25 Unsurprisingly, Deleuze is not interested in contributing to the debates 

regarding the history of style or the epochal concept of the Baroque. His interests are 

rather directed at an elaboration of what he identifies as the “operative function” of 

the Baroque, a function that consists in endlessly producing folds, pushing the folds to 

infinity “fold over fold, one upon the other.”26 

24 Deleuze 1993a, 3.

25 Ibid. 

26 Ibid. 
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IV) Falling drapes and folded tableaus

To be sure, the fold is not a genuine invention of the Baroque. Much of art history could be 

portrayed – and Georges Didi-Huberman did indeed attempt to do so in Ninfa moderna – as 

the history of folds or falling drapes.27 Here too, it all begins with something going quite 

radically off-course; clinamen is the word Didi-Huberman borrows from the Latin philosopher 

and poet Lucretius (1st c. B.C.E.) to express the pervasive obliqueness of things.28 In his 

philosophical and didactic poem De rerum Natura Lucretius employs the term clinamen 

to translate Epicurus’ parenklisis, the indiscernible motion by which atoms are thought to 

be veering minimally from free fall. Whilst hurtling straight down through empty space, 

the atoms simultaneously diverge from their path, through some impetus of their own; 

moreover, they do so at an angle and speed that can neither be comprehended nor imagined. 

“The atoms, as their own weight bears them down / Plumb through 

the void, at scarce determined times, / In scarce determined places, 

from their course / Decline a little – call it, so to speak, / Mere changed 

trend. For were it not their wont / Thuswise to swerve, down would 

they fall, each one, / Like drops of rain, through the unbottomed 

void; / And then collisions ne’er could be nor blows / Among the 

primal elements; and thus / Nature would never have created aught.”29 

Because atoms decline from parallel paths, they hit each other. Collisions and blows, 

cosmic turbulences, are the result, ultimately leading to the metastable systems of dif-

ferent worlds. Didi-Huberman refers to the Lucretian clinamen in order to track the long 

history of the falling drape in a kind of cinematographic documentary, consolidating 

the innumerable swerves of the fold in European art history. Through the eyes of Aby 

Warburg, through a modern science of the image, Didi-Huberman lets his movie of falling 

drapes depart from the motif of the nymph. Nymphs: “wonderfully draped apparitions 

which come from who knows where; prancing in the wind, always touching, not always 

well-behaved, almost always erotic, sometimes disturbing.”30 Using the examples of the 

27 Didi-Huberman 2006.

28 Lucretius’ De rerum Natura (DRN) figures not only as a translation of Epicurus’s philosophy of nature, 

but also as one of the most important and elaborated documents of materialism and atomism of 

antiquity. In the DRN the world as such is thought of as an infinite material texture (textura rerum), the 

atoms being the elements out of which the texture is woven by their own spontaneity (sponte sua). While 

Epicurus defined them negatively as indivisible bodies, ἄτομοι, Lucretius characterizes them additionally 

as seeds of things (semina rerum) and generative bodies (genitalia corpora) to underline their formative 

aspects. He also calls them blind/invisible bodies (corpora caeca) in order to emphasize the aimless and 

chaotic dynamic they are involved in and set at play. The atoms’ aimless and chaotic nature refers back to 

the above-introduced clinamen. Cf. Moser 2014, 5. 

29 Lucretius, De rerum natura (1st c. B.C.E.), in: Lucretius 1994 – 2000, II, v. 217 – 224.

30 Didi-Huberman 2006, 11.
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so called florentine nymph in Ghirlandaio’s Birth of Johannes, as well as in Botticelli’s 

Allegory of Spring and Birth of Venus, Warburg exposed the afterlife of antiquity throughout 

renaissance and humanism, paying special attention to the displacement of the pathos 

formula from the figure to its edges, to hair and the folds of cloth fluttering in the wind, 

to the mobile accessories (bewegtes Beiwerk).31 (Fig. 3)

On the verge of modern representation, Didi-Huberman asserts that Warburg’s nymph 

would not only have “slowed her pace” but would finally have tumbled over. (Fig. 4, 

fig. 5) Between the decline of drapes and the fall of the nymph Didi-Huberman marks 

an alignment and resonance that is expressed in the slow detachment of body and cloth, 

of nudity and that which envelopes it – a subtraction with remainder. What remains, 

Didi-Huberman argues, is drapery itself, a piece of clothing that has slid to the ground, 

a rag, arriving finally at the runnels of the modern European city. From Moholy-Nagy’s 

Trottoirs up to the folds in felt by Robert Morris, (fig. 6, fig. 7) they all embody – and here 

Didi-Huberman refers to Deleuze – the possibility inherent to art of positing form as 

folded. In a nutshell, the clinamen implicit to matter would already have instigated the 

subversion and decline of ideal forms, a decline that does not lead to the negation of 

form, but to another conception of form, namely, to form as folded.32

31 Cf. Warburg 1893.

32 Deleuze 1993a, 35; Cf. Didi-Huberman 2006, 135. 

Fig. 3: Domenico Ghirlandaio,“The birth of Johannes”, 1486 –1490, fresco, S. Maria Novella, Cappella 

Tornabuoni, detail.
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Fig. 4: Tizian, “Bacchanal”, 1518/19, oil on canvas, 175 cm x 193 cm, Madrid, Museo del Prado.

Fig. 5: Nicolas Poussin, “The triumph of Pan”, 1636, oil on canvas, 138 cm x 157 cm, London, 

National Gallery.
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With Didi-Huberman we took a glimpse at the folds within painting, at the double decline 

of the nymph and drapery, a fall that ends, as we have seen, in the runnels of Modernity.33 

With Deleuze we once again rewind Didi-Huberman’s movie on folds and veer a little 

from the path undertaken: we swerve from the fold in painting to the painting as a folded 

tableau. With the folded tableau (tableau ployant) I refer to a notion introduced by Hubert 

Damisch to express the formal – folded – structure of the Baroque Narcisse.34 (fig. 8) The 

painting in question is characterized by a horizontal fold, which divides the plane of the 

picture into a lower and an upper half. Both as connecting and as separating the two 

halves, the operation of the fold thus encompasses the folded totality of the plane as such. 

Years before Damisch’s notion of the folded tableau found its way into art history discourse, 

Deleuze, similarly though in less detail, described the operation of an internal pictorial 

fold characteristic of otherwise incomparable Baroque painters such as El Greco and 

Tintoretto. Looking at El Greco’s The Burial of Count Orgaz (fig. 9) Deleuze focuses on 

the horizontal line splitting/duplicating the painting into a lower and an upper half; in 

the lower half “bodies are pressed leaning against each other,” while in the upper half “a 

soul rises along a thin fold, attended by saintly monads, each with its own spontaneity.”35 

33 Didi-Huberman 2006, 31.

34 Damisch 1996, 33.

35 Deleuze 1993a, 30.

Fig. 6: Lászlo Moholy-Nagy, “Rinnstein”, 1925, 

gelatin silver print, 28,9 cm x 20,8 cm.

Fig. 7: Robert Morris, “Untitled (Emmêlement, Tangle)”, 

1967, felt, New York, Museum of Modern Art.
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Fig. 9: El Greco, “The burial of 

Count Orgaz”, oil on canvas, 

1586 –1588, 480 cm x 360 cm, 

Toledo, Santo Tomé.

Fig. 8: Michelangelo Merisi 

Caravaggio, “Narcissus”, 

1608 –1610, oil on canvas, 113 

cm x 97 cm, Rome, Palazzo 

Corsini, Galleria Nazionale 

d’Arte Antica.
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In Tintoretto’s Last Judgment Deleuze detects 

the same operation of splitting/duplicating the 

totality of the pictorial plane into a lower and an 

upper half and as such constituting its totality 

(fig. 10): 

“In Tintoretto the lower level shows 

bodies tormented by their own weight, 

their souls stumbling, bending and fall-

ing into the meanders of matter; the 

upper half acts like a powerful magnet 

that attracts them, makes them ride 

astride the yellow folds of light, folds 

of fire bringing their bodies alive, diz-

zying them, but with a dizziness from 

on high (un vertige du haut): thus are 

the two halves of the Last Judgment.”36 

In alignment with Heinrich Wölfflin, Deleuze 

characterized the world of the Baroque as ex-

tended across two axes – “a deepening toward 

the bottom, and a thrust toward the upper re-

gions” – the first physical, concerning bodies 

in their materiality, the second metaphysical, 

concerning souls and their freedom.37 Both are 

separated and, at the same time, held together 

by one and the same operation: the operation 

of folding. 

36 Ibid.

37 Ibid, 29.

Fig. 10: Jacopo Tintoretto (copy after), “Last 

judgement”, 17th century, oil on canvas, 

Venice, Museo Correr.
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V) The Baroque house of thought

In the context of Deleuzian thought the fold is considered, first and foremost, in its opera-

tive function. Attention is granted to the manner by which certain relations are articulated, 

the relations between: top and bottom, inside and outside, material and immaterial and 

others. The meaning of the fold transcends its phenomenological manifestations and 

reaches into the realms of mathematics, physics, epistemology and metaphysics. In 

Deleuze’s reading, the fold affords a path towards a different concept of thinking and an 

equally altered concept of the world as such; a world affected, compressed and curved by 

the interplay of forces and matter.38 As previously suggested, the fold is the thread along 

which Deleuze proceeds through the labyrinth of the Leibnizian legacy. A legacy that folds 

or rather doubles over splitting itself into two infamous labyrinths, as Leibniz says: “one 

is the great question of freedom and necessity […]; the other is the debate on continuity and 

indivisible things […].”39 Drawing on Leibniz bipartite differentiation, Deleuze’s allegory of 

the Baroque house of thought likewise presents itself as a diptych. It depicts the division 

of one house into two floors, a lower and an upper one. The labyrinthine continuum of 

matter and its constituents is located on the lower floor, while the labyrinth of the soul 

is located on the upper floor. Contrary to the Platonic distinction between two worlds, 

in contrast also to the model of ascension in the neoplatonic tradition, the Baroque 

house of thought knows only one world with two floors, separated and held together by 

a single fold “that echoes itself, arching from the two sides according to a different order. 

It expresses […] the transformation of the cosmos into a mundus.”40 

In and between the two floors everything is happening according to the operations of the 

fold. The connection/separation between the two in itself is produced through folding. 

The fold, as both the inner folds of the soul (plis) and the outer pleats of matter (replis), 

marks their difference and their oneness, marks their differential affiliation with one and 

the same world. The world depicted as the common house of matter and soul, is thus 

made up of two infinite series of folds, one series unfolding – realizing – the pleats of 

matter, the other one unfolding – actualizing – the folds of the soul. I will later touch 

on just how realization belongs to matter and actualization belongs to the soul, while 

the subject of actualization and realization is the virtual. Within Deleuze’s thought, the 

virtual is the domain of the ideal or problematic. Already in Difference and Repetition, 

Deleuze adopts the notion of the fold as expressing the relation between the virtual with 

its actualization and realization in terms of implication, explication and complication. The 

virtual – in the following quote designated as chaos – implicates the genetic elements, 

which will eventually be by explicated, i.e., actualized and realized. Deleuze writes:

38 Ibid, 45

39 Leibniz 1985, § 189.

40 Deleuze 1993a, 29.
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“The trinity complication-explication-implication accounts for the 

totality of the system – in other words, the chaos which contains all, 

the divergent series which lead out and back in, and the differenciatior 

[the fold] which relates them one to another. Each series explicates 

or develops itself, but in its difference from the other series, which 

it implicates and which implicates it, which it envelops and which 

envelops it; in this chaos which complicates everything. The totality 

of the system, the unity of the divergent series as such, corresponds 

to the objectivity of a problem.”41

Within the trinity of complication-explication-implication the infinite curve of the world 

is set at play: “The world is the infinite curve that touches at an infinity of points an infinity 

of curves […]”.42 And the whole world – thus the important addition – is “enclosed 

in the soul from one point of view”.43 Nevertheless, and this should become clear in 

what follows, the virtual, its actualization and realization are not to be understood as 

reciprocally exclusive, but as strictly complementary. Before entering the discussion on 

their mutual unfolding, let us first take a closer look at Leibniz’s concepts of the labyrinth 

of the continuum of matter and the labyrinth of freedom in the souls, each on its own 

terms and in relation to the fold.

(i) The external folds (replis) of matter

It is specifically in reference to the labyrinth of the continuum of matter that Leibniz 

refers most explicitly to the fold, as in Pacidius to Philaletes, a text dating back to 1676 

that deals with the problem of the continuum in its physical sense. Initially, the atomists’ 

radical solution, as well as Descartes’s definition of matter in terms of extension, is 

left aside.44 In contrast to the microscopic discontinuity that underlies the sense-based 

experience of continuous matter as postulated by the atomists, Leibniz allows only for 

gradual differences, both in relation to the divisibility of material bodies and their motion. 

41 Deleuze 1994, 123 – 4.

42 Deleuze 1993a, 24.

43 Ibid.

44 Despite the broad spectrum of divergent points of view characterizing early modern atomism, itself 

referring back to the renaissance of the notion of atomism in antiquity, and especially to the rediscovery 

of Lucretius, a general affirmation of the composition of complex bodies out of naturally indivisible 

material atoms, can be asserted. While Leibniz sympathized with such a conception of the body in his 

early physics, in his later physics he insisted on its incompatibility with his general understanding of the 

natural world. A similar development can be diagnosed in regard to Leibniz’s account of the mechanical 

philosophy of his time. While a certain sympathetic affiliation with the new mechanical philosophy and 

its aim to explain all natural phenomena in terms of matter and motion prevails throughout his work, 

his later physics should at the same time be read as a thorough critique of the mechanistic tradition. Cf. 

McDonough 2014, ch. 2. 



66 Angelika Seppi

Instead of a cluster of primary indivisible particles, the fold as a relevant concept enters 

the discussion; instead of a perfectly solid or perfectly fluid body, there appears an 

elastic yet resistant body. 

“I myself admit neither Gassendi’s atoms, i.e. a body that is perfectly 

solid, nor Descartes subtle matter, i.e. a body that is perfectly fluid 

[…] the division of the continuum must not be considered to be like 

the division of sand into grains, but like that of a sheet of paper or 

tunic into folds […]. It is just as if we suppose a tunic to be scored 

with folds multiplied to infinity in such a way that there is no fold 

so small that it is not subdivided by a new fold: and yet in this way 

no point in the tunic will be assignable without it being moved in 

different directions by its neighbors, although it will not be torn apart 

by them. And the tunic cannot be said to be resolved all the way down 

into points; instead, although some folds are smaller than other to 

infinity, bodies are always extended and points never become parts, 

but always remain mere extrema.”45

Neither perfectly solid, nor perfectly fluid, Leibniz conceives of matter as an elastic, 

continuous and endlessly folded texture. Folded into ever-smaller folds, matter does 

not ever break down into primary atomic constituents, nor is its cohesion (tension and 

release) ever lost. Matter thus constitutes an infinite continuum, wherein “no point […] 

will be assignable without it being moved in different directions by its neighbors, although 

it will not be torn apart by them.”46 Contrary to the atomists’ hypothesis, matter is thus 

perceived as indecomposable into primary particles. Matter rather forms a variety of 

masses according to the motion and the forces active in and between its folds. This takes 

us into Leibniz’s complicated ontology of forces. Although this is not the place to give 

a detailed account of it, a few basic remarks are inevitable to shed some light on the 

terms which Deleuze uses to identify two basic types of forces: an elastic-compressing 

force responsible for the accumulation of matter along its outer, inorganic pleats, and a 

plastic force, responsible for the organization of matter along its inner, organic pleats.47

Leibniz’s critique of atomism led, as we have seen, to a conception of material bodies 

as irreducibly elastic and infinitely divided into ever-smaller folds. The material world is 

thus conceived as a worldwide net of ever-smaller folds. In and between the worldwide 

45 In: Leibniz 2001, 185, in the English translation, the word “extrema” is used, while Leibniz uses 

“Grenzen”. Cf. Leibniz 1676, 145.

46 Leibniz 2001, 185.

47 This diagrammatical sketch is developed in the 1st chapter of The fold. See Deleuze 1993a, 3 –13. 
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net of material folds, different forces are at play. Leibniz divides them into passive and 

active, into primitive and derivative. He writes: 

“Active force is twofold, that is, either primitive, which is inherent in 

every corporeal substance per se […] or derivative, which, resulting from 

a limitation of primitive force through the collision of bodies with one 

another, for example, is found in different degrees. Indeed, primitive 

force (which is nothing but the first entelechy) corresponds to the soul 

or substantial form. […] Similarly, passive force is also twofold, either 

primitive or derivative. And indeed, the primitive force of being acted 

upon [vis primitiva patiendi ] or of resisting constitutes that which is 

called primary matter in the schools, if correctly interpreted. This force 

is that by virtue of which it happens that a body cannot be penetrated 

by another body, but presents an obstacle to it, and at the same time is 

endowed with a certain laziness, so to speak, that is, an opposition to 

motion, nor, further, does it allow itself to be put into motion without 

somewhat diminishing the force of the body acting on it. As a result, 

the derivative force of being acted upon later shows itself to different 

degrees in secondary matter.”48

In what follows the passage quoted above, the two facets of an active force are spelled 

out as an elementary dead force (vis mortua) restricted to the initiation of motion and 

an ordinary live force (vis viva) joined with actual motion.49 As examples of dead forces 

Leibniz lists: the centrifugal force, the force of heaviness and the force that restores a 

stretched elastic body back to its original state. The living force is assigned to the impact 

arising from the fall of heavy bodies. Passive forces, contrary to active force, are related 

to the resistance to motion: “a force […], an inclination to retain its [a thing’s] state, and 

so to resist changing.”50 In what concerns the difference between primitive and derivative 

forces, the primitive active force is assigned to the soul or substantial form, while the 

primitive passive force is assigned to primary matter. Together they complete a corporeal 

substance. The derivative forces, on the other hand, are those commonly investigated 

by physicists analyzing size, shape and motion of natural phenomena in as far as they 

satisfy certain laws.51 In Leibniz’s opinion, only with regard to primitive forces – that is 

with regard to the primary activity of the soul or substantial form – an escape from the 

dead ends of mechanistic reductionism is imminent. Leibniz’s critique of the mechanistic 

48 Leibniz, Specimen Dynamicum (1695). In: Leibniz 1849 – 63, vol. VI, 236 –7; Leibniz 1989, 119 – 20.

49 Ibid, 238; 290.

50 Leibniz, Letter to de Volder (March 24th/April 3rd, 1699). In: Leibniz 1965a, vol. II, 170; Leibniz 1989, 172. 

51 Leibniz, Specimen Dynamicum (1695). In: Leibniz 1849 – 63, vol. VI, 237; Leibniz 1989, 120.
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approach does not lead to its negation, but to a reconsideration of its limits. As Leibniz 

puts it in Discourse on Metaphysics: 

“Although all particular phenomena of nature can be explained mathe-

matically or mechanically by those who understand them, nevertheless 

the general principles of corporeal nature and of mechanics itself are 

more metaphysical than geometrical, and belong to some indivisible 

forms or natures as the causes of appearances, rather than to corporeal 

mass or extension.”52

As long as we move from fold to fold along the creases introduced by derivative forces and 

explained by mathematics and mechanics according to Leibniz we will ultimately be re-

stricted to perceive the unfolding of the world only in mathematical and mechanical terms 

and thus miss its real nature. Let my try to make this point as clear as possible: Leibniz 

holds on to the hypothesis that matter forms an infinite continuum and consequently 

denies the existence of any final indivisible point, which would allow us to determine 

the limits of a specific body or motion. Then, the question arises: in what way should 

a discernable unity within the infinite multiplicity of matter and motion be conceived. 

For Leibniz the specific unities of matter and motion point, as we have seen, to “some 

indivisible forms or natures”, transcending the mathematical and mechanical realm.53 

With this in mind we can return to Deleuze and his differentiation between elastic-com-

pressing forces as assigned to the accumulation of matter along its outer, inorganic 

pleats and his so called plastic forces, assigned to the organization of matter along its 

inner, organic pleats. Both the elastic-compressing forces and the plastic forces must be 

conceived as derivative forces in Leibniz’s sense. In Deleuze’s reading of Leibniz one and 

the same worldwide net of material folds is thus developed along two complementary 

lines: under the influence of elastic-compressing forces, matter, as a mass, forms external 

folds that encompass an outer milieu. The outer milieu may be considered inorganic, 

to an extent. Subject to plastic forces, matter, as an organism, forms inner folds that 

encompass an inner milieu. The inner milieu may be considered organic, to an extent. 

‘To an extent’ means that there is no difference in essence between the inner and the 

outer, between that which is organic and that which is inorganic, but only “a difference 

52 Leibniz, Discourse (1686). In: Leibniz 1965a, vol. IV, 444: Leibniz 1989, 51 – 2. 

53 Deleuze certainly follows Leibniz’s anti-mechanical trend, by pushing it towards a different end: a 

mechanism for Deleuze is no longer faulty “for being too artificial to account for living matter, but for 

not being mechanical enough, for not being adequately machined.” Deleuze 1993a, 8. 
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of vector”.54 Leibniz himself uses the images of a garden full of plants or a pond full of 

fish to express the intertwined logic of inside and outside, organic and inorganic: “Every 

portion of matter may be conceived as a garden full of plants, and as a pond full of fish. 

But every branch of each plant, every member of each animal, and every drop of their 

liquid parts is in itself likewise a similar garden or pond.”55 An organic inside is thus 

inhabiting an inorganic outside, as in the image of fish in a pond, while each fish in itself 

is once again a host to a throng of living being and thus functions as the outside to the 

latter. “The inorganic folds,” as Deleuze puts it, “move between two organic folds. For 

Leibniz, as for the Baroque, the principles of reason are veritable cries: Not everything 

is fish, but fish are teeming everywhere.”56

Matter, located on the bottom floor of the Baroque house of thought, thus, turned out to 

be folded into masses and organisms, into accumulations and living beings, into outer 

and inner milieus, according to the interplay of elastic-compressing and plastic forces. 

Recall that both the elastic-compressive and the plastic forces were considered derivative 

forces and as such insufficient to account for the unity of corporeal bodies and motion. 

For Leibniz, the unity of corporeal bodies and the unity of motion, necessarily point to 

another “higher inner and individualizing entity,”57 to the reign of primitive forces and 

hence to the labyrinth of the soul.

(ii) The internal folds (plis) of the soul

Changing floor, traversing from the labyrinth of matter to the labyrinth of the soul, implies 

a shift from Leibniz’s physics towards his metaphysics. With the introduction of primitive 

forces, this shift is already noted. Just as his physics, Leibniz’s metaphysics too can be 

divided into an early and a late period. The early period is generally regarded as reaching 

from Leibniz’s youth to the Discourse on Metaphysics (1686), while the late period is gener-

ally considered to expand from the New System (1695) to the theory of monads developed 

since then.58 The theory of monads constitutes the main focus of the following remarks. 

Since its very first articulation, Leibniz’s theory of monads has provoked a wide range of 

interpretations, trying to come to terms with the unseizable description of the monad as a 

54 Ibid, 8. In its genealogy the concept of milieu can be traced back to 18th century biology. From then on it 

played a fundamental role in the historically diverging conceptions of the living individual in relation to 

its environment. In A thousand Plateaus Deleuze and Guattari mainly refer to Jakob v. Uexküll and Gilbert 

Simondon to further elaborate on a contemporary concept of the milieu. See Deleuze/Guattari 1987, 

especially the chap. titled The Geology of Morals, 39 –75. 

55 Leibniz 1965b, § 67.

56 Deleuze 1993a, 9.

57 Ibid.

58 For an introduction to Leibniz’s early and late metaphysics see Mercer/Sleigh 1994; Rutherford 1994. 
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simple, soul-like substance, unextended, without parts and without windows,59 and more 

generally, with the integration of the theory of monads within Leibniz’s account of matter 

and the interplay of body and soul.60 In The fold Deleuze provides a seminal reading of 

Leibniz’s theory of the monads. Within the limits of this paper neither Leibniz’s original 

theory nor Deleuze’s interpretation can be developed to their full extent. I would rather 

restrict myself to stressing the foundational role that Leibniz assigns to the substance 

as a principle of force and of true unity and to sketching its relation to the concept of 

the fold. To be sure, Leibniz’s notion of the monad as unextended, soul-like substance 

implies a radical reconceptualization of the notion of substance as such. As we have 

seen above, Leibniz saw it necessary to reintroduce the notion of substantial forms in 

order to account for the unity of corporeal bodies and of motion. The reintroduction 

of substantial forms does not come without a transformation of substance in terms of 

forces. Leibniz writes: “[…] it was necessary to restore, and, as it were, to rehabilitate 

the substantial forms […], but in a way that would render them intelligible, and separate 

the use one should make of them from the abuse that has been made of them. I found 

then that their nature consists in force, […].”61 It is due to this de-substantialization of 

the substance in terms of forces that Deleuze characterizes Leibniz (and the Baroque in 

general) as exchanging the hyle-morphic model for the material-force model.62 

Following Deleuze, I will from now on traverse a path, which according to him connects 

the three essential phases defining the internal folds of the soul, from inflection to the 

point of position (or point of view) and from the latter to the envelope of inherence (or 

inhesion).63 (fig. 11) 

59 Cf. Leibniz 1965b, § 1 and § 7.

60 Cf. Rutherford 1994, 124. Bredekamp 2008 offers an exceptional reading of Leibniz and the windows of 

the monad. 

61 Leibniz, New System (1695). In: Leibniz 1965a, vol. IV, 478 –79; Leibniz 1989, 139.

62 Cf. Deleuze 1993a, 35.

63 Cf. Deleuze 1993a, 20 – 22. The corresponding French and German terms are: point d'inflexion/

Inflexionspunkt, point de vue/Gesichtspunkt and enveloppe d'inhérence, d'inhésion/Hülle der Inhärenz, 

Inhäsion. Cf. Deleuze 1988a, 28 – 31.

Fig. 11: Point of inflection (Z), point of view (P, Q), point of inclusion (m(P), m(Q)).
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Before doing so, let me briefly address a more general question: what do the internal 

folds of the soul stand for? Recall the partition into an upper and a bottom floor that 

characterizes the Baroque house of thought. On the bottom floor we posited the labyrinth 

of matter, on the upper floor the labyrinth of the soul. In reference to Leibniz and his 

description of the monad as simple substance without windows, Deleuze depicts the 

upper floor as some kind of “dark room or chamber decorated only with a stretched 

canvas ‘diversified by folds,’ as if it were a living dermis.”64 Though unextended, without 

parts and without windows, the unity of substance is in itself diversified. Leibniz describes 

the internal diversification as “a multiplicity within the unity of the simple substance”, 

as a “plurality of states and of relationships”, consisting in nothing else but “what we 

call perception”.65 “And that is all that can be found in a simple substance –”, Leibniz 

continues, “perceptions and changes of perceptions [appetition].”66 According to Leibniz 

the perceptions placed on the opaque canvas of the soul, represent an innate form of 

knowledge; Deleuze on his part describes them in terms of ideal events. Now, what is an 

ideal event? According to Deleuze an ideal event is a set of singularities, mathematically 

speaking, a set of singular points that characterize a curve.67 In the terminology of 

The fold the ideal event corresponds to the point of inflection. A second distinguishing 

point between Leibniz and Deleuze should be emphasized: while according to Leibniz a 

pre-established harmony precedes individual substances, for Deleuze no such harmony 

could be supposed. For Deleuze a pre-individual field is thought to precede the individual, 

namely, the virtual. It is once more in analogy to mathematics, more precisely, in analogy 

to the mathematical concept of a manifold that Deleuze specifies the notion of the virtual 

as a pure Many, as a purely disjunctive diversity.68 In order for the ideal event to pass from 

a state of mere virtuality into actuality and reality, it must be actualized by the soul and 

realized by matter. Having made this point, we can now return to the figure introduced 

above. The point of inflection (Z) designates the formative force, the ideal event of the 

fold – the singularities of perception. The points of view (P), (Q) designate the vectors 

of curvature (p), (q), which indicate the direction of concavity and stand for a place, a 

site or a position – the appetite that leads the perceptions to change. Lastly, the points 

of inclusion m(P), m(Q) designate what insists in the point of view: the soul or the 

subject as “an envelope of inherence or of unilateral ‘inhesion’”.69 Inclusion, inherence 

or inhesion, Deleuze argues, “is the final cause of the fold”.70 Deleuze’s line of thought 

thus becomes apparent: instead of starting off with the soul or subject, he starts from 

the event of the fold, as the formative force giving rise to a series of subsequent transfor-

64 Deleuze 1993a,  4. Cf. Leibniz 1996, II, chap. 12, 114ff.

65 Leibniz 1965b, § 13 and § 14.

66 Ibid. § 18.

67 Cf. Deleuze 1969, 67. 

68 Deleuze 1993a, 76.

69 Ibid, 41.

70 Ibid.
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mations. Infinitely many points of views are generated by infinitely many events of folding, 

transforming concavity to convexity and vice versa, points of view, which than figure as 

points of position for a soul or subject to envelop. Nevertheless, the process which I 

have delineated cannot be conceived as one-directional, for “why would something be 

folded, if it were not to be enveloped, wrapped, or put into something else?”71 

Let me linger a while longer on inflection itself. In Deleuze’s terms inflection was defined 

as the ideal event happening to the infinite curve of the world, such that the “infinite 

curve that touches at an infinity of points an infinity of curves”72 must be considered the 

ever-unfinished product of the events of inflection. At the heart of these considerations 

is the notion of a thoroughly eventful world, within which every inflection becomes the 

locus of a new fold, pushing the variation towards infinity: “That is how we go from fold 

to fold and not from point to point, and how every contour is blurred to give definition to 

the formal powers of the raw material, which rise to the surface and are put forward as so 

many detours and supplementary folds.”73 According to Deleuze every inflection is to be 

considered a variation pulverizing the entire world into an infinite number of ever-smaller 

folds. But the pulverization of the world does not come without the folds simultaneously 

exceeding themselves or finding their finality in an inclusion.74 What formerly seemed an 

end result to the process of unfolding – the soul or subject – is, then, at the same instance 

designated the final cause of folding. Nevertheless, between the process of unfolding 

and the inherence of the soul or subject an essential gap or asymmetry is present, an 

asymmetry between the virtuality of the event of folding (point of inflection) and the 

actuality of inherence (point of inclusion). “What is folded”, Deleuze concludes, “is the 

included, the inherent,” furthermore “it can be stated that what is folded is only virtual 

and currently exists only in an envelope, in something that envelops it.”75 By enveloping 

the infinite curve of the world, the soul or subject actualizes it. But something is still 

missing to complete the picture we have been drawing: realization as belonging to matter. 

In a nutshell, the Leibnizian-Deleuzian allegory of the Baroque house of thought is to be 

considered a single virtual, infinitely curved plane, actualized by the souls or subjects 

on the upper floor and realized by matter on the bottom floor. Rather than maintaining 

a horizontal divide, a suitable image for the Leibnizian-Deleuzian allegory would be one 

that folds one floor on top of the other into a single plane. Every fold of this plane would 

constitute a thin membrane alongside which the infinite outside of the continuum of 

matter and the essential enclosure or finitude of every actual being touch upon each 

other, actualizing and realizing the infinite potential of the virtual plane.

71 Ibid, 22.

72 Ibid, 24.

73 Ibid, 17. 

74 Cf. ibid.

75 Ibid. 
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VI) The inside of the outside

What does thinking in folds ultimately imply? It implies a philosophy of the event and 

a corresponding theory of differentiation and individuation. The differentiated and the 

individuated are no longer conceived as miraculously presupposed or as deduced from 

some kind of ideal form, but as the actualization and realization of a common virtual 

plane. Whatever appears in front of our eyes necessarily presents itself to us as that which 

has already been actualized and realized, as that which has already been differentiated 

and individuated, as that which has already been unfolded. To a degree, the process of 

differentiation and individuation – the process of unfolding – will always be buried beneath 

some assumed form; that is to say, the process itself is always in danger of being covered 

by its own products and thus of being overlooked.76 The differentiated will inevitably 

present itself to us in a certain form and as having certain qualities, which necessarily 

veil its initially formless and unqualified intensities: “In brief, we know intensity only in 

the extended fold and the object veiled in qualities.”77 By analogy with Paul Klee, for 

whom the creative forces themselves cannot be named, differentiation can be said to 

remain unnamable to an extent.78 Nevertheless, as Klee continues, the creative forces 

do reveal themselves and have to be revealed in the known types of matter, just as the 

curved line reveals itself as a trace of the virtual intensities preceding its actual form. 

In reference to Henri-Louis Bergson, Deleuze considers the virtual plane to involve the 

entire past – not only the past conserved in the actual form, and the future that will at 

some point be actualized, but also a past that was never present, and a future that will 

never become present.79 

Following in Derrida’s footsteps we have initially posited the fold as another exemplary 

figure of the logic of the supplement expressed in the syntactical form of “neither/nor, 

that is, simultaneously either/or”.80 Like Derrida’s doubly-folded words, which subvert 

the binary order characteristic of western metaphysics from within the metaphysical text 

itself, the fold has been shown to unsettle the dichotomies between now and then, veiling 

and unveiling, difference and identity, organic and inorganic, matter and soul, virtuality, 

actuality and reality. The intimate duplicity of folding – “a severing, by which each term 

casts the other forwards, a tension by which each fold is pulled into the other”81 – unsettles 

the very foundation of ontology as such, namely the spatial, temporal and normative 

order of being as presence. For both Deleuze and Derrida – choosing different points 

76 Cf. Deleuze 1994, 281. 

77 Ibid, 282 – 283.

78 In Die Kraft des Schöpferischen Klee states: “Die Kraft des Schöpferischen bleibt letzten Endes 

geheimnisvoll. [The creative forces ultimately remain inexplicable.]”, Klee 1956, 17. 

79 Cf. Deleuze 1994, 82ff.

80 Derrida 1981b, 43.

81 Deleuze 1993a, 30.
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of view, using different conceptual tools and arriving at different conclusions – thinking 

in folds amounts to an ontological revolution or rather to a substitution of the logic of 

being for a logic of difference. With his notion of differentiation Deleuze substitutes the 

Platonic concept of a pure being-without-becoming for a pure becoming-without-being. 

With the notion of différance Derrida substitutes the ontological question “what is?” for 

an affirmation of the trace of a radical alterity, subverting both ontology’s interrogative 

form and the authority of presence and identity underlying it. Deleuze’s differentiation, 

as much as Derrida’s différance, are to be conceived the other to “all that is”. But the 

other can no longer be located simply beyond or outside “what is” – for if it were the 

case, a mere inversion would once again put the order of being upside down, while still 

maintaining the same ontological frame. In order to poke a hole into the frame itself, 

in order to open it up for “all that is not”, the other or outside must be conceived as 

insisting within all the folds and foldings which together make up this or that inside: 

“they are not something other than the outside, but precisely the inside of the outside.”82 

82 Deleuze 1988b, 97. 
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Claudia Blümle

Infinite Folds: El Greco and Deleuze’s 

Operative Function of the Fold

The diffuse light and the vaporous masses of clouds bursting into the geometrically 

constructed space in El Greco’s Annunciation of 1567 emphasise the contrast between a 

measurable terrestrial world and an immeasurable celestial one (fig. 1). The geometric 

shapes on the floor, with their closed contours, stand out against the billowing cloud 

formations, which carry the archangel Gabriel and also conceal most of the blue sky and 

the source of light. The opposition and transition between fixed forms and formlessness 

is carefully composed: the spaces occupied by the terrestrial floor and the heavens each 

take up a complete half of the painting.1 Located precisely in the centre, the dark brown 

horizontal parapet, both horizon and demarcation of the floor, marks the separation 

between the two worlds.

Concealed behind the clouds, a wide, unbounded sky opens up above the horizon. Fill-

ing the upper part of the painting, it is either a celestial irruption into an interior, or a 

landscape that is located outside. The horizon above the parapet envelops the viewer as 

it would in a landscape painting. Both forms of the ground, the one of the floor and that 

of the landscape, are thus intertwined in El Greco’s Annunciation.2 There is a tension 

between the closed contours, the fixed forms and perspectival geometry of the lower half 

and the formless fields of colour, the tangents, curves, hyperbolae and undulating lines 

above that exceed the painting. This tension, a continuous motion, is created, as will be 

shown in what follows, by the different forms and processes of the folds in the painting.

1 Wölfflin 2015.

2 In his essay ‘L’art et le pouvoir du fond’ Maldiney shows that in the most powerful artworks we perceive 

the ground as analogue to the ground on which we move, or to the space that surrounds us and that we 

pass through; Maldiney 1994b, 182.
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In El Greco’s Annunciation, the chequered floor represents a tangible, clearly delineated 

space, in which Mary and the archangel Gabriel can take their positions. Like a wall, the 

low parapet, functioning as a border, marks the outline of the floor. The edge of the 

dark brown, impermeable wall acts as a distant horizon, on which we can discern the 

silhouette of a building. The vanishing point is thus situated behind the enclosing parapet, 

in a place which also lies outside our perception (fig. 2). The wall is not only a horizon 

and a dividing line between heaven and earth, but it also conceals, like a closed door, 

the distant recession of the floor as it converges into the infinite vanishing point. The 

Fig. 1: Doménikos Theotókopoulos, called El Greco: Annunciation, about 1576, oil on canvas, 117 x 98 cm, 

Madrid, Museo Thyssen-Bornemisza 
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position of the bright cloud in front of the massive, dark and enclosing wall intensifies 

the downward pull of the linear perspective. In this place in the painting, the encounter 

of the terrestrial world and the numinous realm, the divine, is palpable: on the floor we 

can see the distinct outlines of the shadow cast by a cloud (fig. 3). In its fusion of light 

and line, the representation of this shadow, with its closed contours, follows the rules 

of linear perspective, while the indeterminate form of the cloud itself defies such a 

Fig. 2: Doménikos Theotókopoulos, 

called El Greco: Annunciation, 

about 1576, oil on canvas, 117 x 

98 cm, Madrid, Museo Thyssen- 

Bornemisza, according to a 

scheme of C. B.

Fig. 3: Doménikos Theotókopoulos, 

called El Greco: Annunciation, 

about 1576, oil on canvas, 117 x 

98 cm, Madrid, Museo Thyssen- 

Bornemisza, detail. 
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spatial representation.3 In opposition to the pure perspectival clarity, the opaque cloud, 

which is both light and heavy, bright and dark, almost completely obscures the view of 

the wall (fig. 1).

Six years before the Annunciation of 1576 (fig. 1), which measures 117 x 98 cm, El Greco 

painted a smaller version of the same theme (fig. 4). As in the later version, bright light, 

accompanied by tumbling cherubs, pours out of the cloudy sky, streaming down into the 

geometrical space below where it seizes the red curtain. In both paintings, the opposition 

of solid form and diffuse formlessness corresponds to the terrestrial world below and the 

celestial sphere above, a physical and a numinous world. It is within this field of tension 

that the Annunciation takes place, and El Greco’s task was to render visible this biblical 

event of the Incarnation as transition. As in the later treatment, in this earlier, smaller 

version, a linear perspective pulls the viewer’s gaze to a distant place. With its steep 

recession, the painting establishes a rhythm alternating between the light falling in from 

the right and the shadow cast by the cloud. If we retrace the thinly drawn grid of the floor, 

we find two vanishing points. The location of the first – in the shadow of the larger arch, 

where the two central orthogonals intersect – is very close to the threshold of inside 

and outside. This disturbs the spatial arrangement: the view of the outside appears as a 

painting within the painting. But if we follow the outer orthogonals, we arrive at a second 

vanishing point, in the arch at the end of the narrow passage (fig. 4). The orthogonals 

do not end behind an opaque wall here but recede into a view opened up by the arch. 

The patch of blue within this second arch either suggests a view on to an open sky or a 

marble wall. El Greco’s two Annunciations show how he developed his pictorial concepts 

of form and linear perspective, of opaque formlessness and deformation, and brought 

them into a dynamic relationship to each other.

In his study Francis Bacon: The Logic of Sensation, first published in 1981, Gilles Deleuze 

has explored the deformation of painting in El Greco’s work. He draws our attention to 

a horizontal line in The Burial of the Count of Orgaz, which divides the painting into two 

parts, “upper and lower, celestial and terrestrial”4, a division which we also find in El 

Greco’s Annunciation. In the lower part 

“there is indeed a figuration or narration […], although all the coef-

ficients of bodily deformation, and notably elongation, are already 

at work. But in the upper half […] there is a wild liberation, a total 

emancipation: the Figures […] are relieved of their representative role, 

and enter directly into relation with an order of celestial sensations.”5

3 Brunelleschi demonstrated this in his experiment with linear perspective in the early fifteenth century. 

See Damisch 2002, 111 –124.

4 Deleuze 2003, 9.

5 Ibid.
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With the Holy Ghost, “lines, colors, and movements are freed from the demands of 

representation.”6 Seven years later, in his book Le pli (The Fold) of 1988, Deleuze returns 

to this horizontal line which divides the painting in two, creating an upward surge and 

downward pull. Deleuze considers this fold, “a fold which differentiates and self-differ-

entiates”7, to be the ideal fold of the baroque, and adopting a Heideggerian concept, 

calls it Zwiefalt. In El Greco’s Annunciation this “twifold”8, a fold between two folds, 

articulates itself on the horizontal and vertical planes, in curvilinear and undulated form 

and in the fields of colour.

According to Deleuze, a painted image can be conceptualised in two ways: the Platonic 

notion of everlasting similitude and identity or exactly the opposite, with difference at its 

core, and representations as the product of a movement of difference. Deleuze challenges 

the notion of a painting as static representation, depiction, narrative or illustration of 

something external to itself, arguing that it is the difference internal to the painting that 

unfolds as creative movement, revealing a loose and multidirectional network of colours 

6 Ibid.

7 Deleuze 1991, 236.

8 In the English edition of Le pli (Deleuze 1993) Heidegger’s neologism Zwiefalt has been erroneously 

rendered as Zweifalt, which, as Sjoerd van Tuinen points out, does not capture the word’s intrinsic 

duplicity and ambiguity. He suggests that the best English translation would be the Middle English  

 “twifold”. Van Tuinen 2014, 69 and 83f. (note 49). 

Fig. 4: Doménikos Theotókopoulos, 

called El Greco: Annunciation, about 1570, 

oil on wood, 26 x 20 cm, Madrid, Prado.
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and lines. The static opposition of colour and ground is dissolved and replaced by a fluid 

interplay that has emerged from dynamic structural relations.9 In El Greco’s Annunciations 

the formless ground of colour and the clearly outlined figures have equal weight, and their 

relation to each other is one of difference as well as of gradual transition. The motifs of 

heaven and curtain are also spatially separate yet intertwined, and this interpenetration 

is most intense where the celestial light dissolves into the drapery of the red curtain. 

The opposition of the numinous-intelligible world and the physical world of sensations 

is overcome through the curtain as well as the mediation of the archangel Gabriel, who 

“is the figure of the coming of the invisible into the visible and of the unsayable into the 

word”10. That he acts as a messenger is emphasised by his central place in the compo-

sition, opposite the red curtain, exactly between heaven and earth. Gabriel’s arrival on 

earth is marked by the sharply defined shadow on the one hand and the formless cloud 

on the other. The form of the archangel, who is floating above the ground in his heavenly 

sphere, with a bared leg, is gracefully distorted into a figura serpentinata.

In direct contrast, the straight vertical line of his sceptre points towards the heavens 

and intersects the horizontal line of the wall (fig. 5). If we follow the angel’s downturned 

right wing, we notice that it describes a horizontal line, while the left wing, gradually 

turning from white to black, ascends into the cloudy sky as a vertical line parallel to the 

frame. A structure of perpendicular lines is thus repeated in metonymic shifts in the 

9 Uhlig 2007, 301 – 305.

10 Marin 2006, 181.

Fig. 5: Doménikos Theotókopoulos, 

called El Greco: Annunciation, about 

1576, oil on canvas, 117 x 98 cm, Madrid, 

Museo Thyssen-Bornemisza, according 

to a scheme of C. B.
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painting. Even the smallest details have this basic structure of a cross, for example the 

filial of the sceptre with its three white pearls, which marks a horizontal to both sides and 

also joins the ascending vertical. Thus two movements are created: a vertical ascension 

and a horizontal bilateral movement, which points sideways out of the picture and is 

echoed on both sides by the two figures, Mary and the archangel Gabriel, as well as by 

the swathes of red fabric next to them, the curtain to the left and the drapery beside 

the angel on the right.

Rich in tonal variation, the folds of the red curtain, which reach into the light and colour 

of the heavens, folding and unfolding from both sides and culminating in Zwiefalt, move 

into the darkness at the left margin and the radiant light in the distance. This folding and 

unfolding movement breaks out of the frame as an infinite sequence, abandoning the 

geometry of the finite for the differential geometry of calculus. In the first two volumes of 

his Konturen einer Geistesgeschichte der Mathematik: Die Mathematik und die Wissenschaft 

(vol. I) and Die Mathematik in der Kunst (vol. II)11 Max Bense refers to Heinrich Wölfflin’s 

analysis of form12, which, along with the work of Alois Riegel and Wilhelm Worringer, 

was crucial for Deleuze’s conceptualisation of painting. Bense theorises the relationship 

between the principles of style as form in art and in mathematics to explore parallel devel-

opments between the history of art and the history of mathematics. According to Bense, 

Wölfflin’s studies of the transition from Renaissance to baroque as a movement from 

fixed form to formlessness13, from the linear to the painterly, from planarity to recession, 

closed form to open form or clearness to unclearness14 reveal formal developments in 

painting that attend Euclidean geometry in the Renaissance and elements of calculus 

in the baroque. The baroque handling of light and colour and its curved lines can be 

expressed mathematically as infinitesimal functions.15 In its beauty “of boundlessness 

and the infinite” 16, the open form of the baroque emancipates itself from the frame, filling 

it with unruly figures, unevenly distributed areas of light and sharply cropped forms.17 By 

using terms such as sequence 18, irrational 19 and incommensurable 20 for the description 

of the dynamic depth of baroque paintings, Wölfflin, for his part, applies mathematical 

concepts to his analysis of form.21 

11 Bense 1948 and Bense 1949. For the link between Bense and Wölfflin see: von Herrmann 2014.

12 Wölfflin 1967 and Wölfflin 2015.

13 Wölfflin 1967 and Wölfflin 2015.

14 Wölfflin 2015.

15 Bense 1948, 26f. and 92.

16 Wölfflin 2015, 226.

17 Ibid, 205 and 210f.

18 Ibid, 230.

19 Ibid, 278, 280, 283, 291.

20 Ibid, 291.

21 Bense 1948, 100.
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Art-historical, philosophical and mathematical analysis of form have helped us to elu-

cidate the structure of El Greco’s Annunciation: the horizon line, which demarcates 

zones of drawn form and coloured formlessness, the geometrical perspectival space 

or the intersecting vertical and horizontal movements above the archangel. Further 

connections to calculus can be seen in one of the important figures in the composition, 

the red curtain, which takes up two thirds of the pictorial space on the left side. Falling 

down in a straight line in one place and in undulating folds in another, it creates a vertical 

line which joins the figure of Mary. What is striking here is that the edge of Mary’s blue 

garment is aligned exactly with the horizontal line of the grid of the floor. If we read this 

horizontal line as the axis of a coordinate system and take the perpendicular line of the 

left edge of the painting as vertical axis, we can retrace the figure of a hyperbola, which 

escapes the frame of the painting (fig. 6). The complex structure of this work thus shows 

baroque space curves in the interplay of coordinate axes and tangents. Bense explains 

this process in baroque art as follows:

“The simple, continuous linear arrangement of objects commonly 

used in Renaissance painting to create clear, simple ratios of pro-

portion and symmetry, which, as Wölfflin too has rightly noted, also 

governs all classical art, is replaced in the baroque by a non-linear, 

continuous, curved arrangement of objects, and from this results 

what some describe as the emphatically asymmetrical character of 

baroque composition.”22

The pictorial and compositional hyperbola of the red curtain at the left margin in El 

Greco’s Annunciation and the superimposed undulating line of the drapery further unfold 

in the folds that merge into the heavens, fan out of them or are drawn in. The interaction 

between the cloud formations and light trails on one side and the folds of the curtain 

and its shadow on the other is also expressed as an upward-sloping curve under the 

group of cherubs.

The undulating lines, curves, zigzags and diagonals are not drawn, but created by the 

interplay of colour modulations between light and dark, between warmer and colder tones. 

This complexity of baroque drapery as Zwiefalt did not appear in the earlier treatment 

of 1560. Here the curtain moves in a diagonal line, merging into the light and reaching 

22 Bense 1949, 58. Note that this does not refer to the 17th century Cartesian coordinate system of analytic 

geometry (developed by Descartes and Fermat), which might have also oblique axes, but to a late 

Middle Ages concept of geometry that emphasizes the construction of an infinite space via a system 

of perpendicular lines. For concepts of an infinite, imaginary space (spatium imaginarium) during the 

late Middle Ages see Grant 1981, chapter 6. Bense has also suggested that El Greco’s paintings served 

Leibniz as a source of inspiration for the discovery of calculus. Note that calculus was developed by 

Gottfried Leibniz and Isaac Newton, independently from each other, in the 17th century.
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out of it into the pictorial space. But a space curve, framed by the white stairhead, is 

perceptible as a contour in Mary’s garment. In both treatments of the Annunciation the 

finite in the geometrical space is pushed to its limits, both undermined and mediated, 

to create a bridge to infinitude and formlessness: a concentric movement penetrates the 

depth of the painting, while an eccentric movement reaches out of it. While the movement 

of the systole leads to an isolation of the figure, that of the diastole causes expansion 

and dissipation, as Deleuze has shown in Francis Bacon: the Logic of Sensation.23 Within 

the painting everything is distributed as diastole and systole. The systole contracts and 

condenses forms and bodies, while the diastole expands and dissolves them into light 

and colour. Even if the form of the curtain were to dissipate entirely in formlessness, 

it would remain constrained by the forces that have taken hold of it to return it to its 

surroundings. Deleuze calls the interplay of diastolic and systolic movements rhythm. 24 

It is through rhythm that form manifests itself in the painting and the painting’s relation 

to the outside is expressed.

The relational web in this painting follows Deleuze’s concept of the diagram as a disor-

ganised and deformed unity, which shows a visual abyss in the depths but also creates 

order and rhythm. The diagram brings violent chaos and formless colour to the pre-ex-

isting figuration but is also “a germ of rhythm”25 for the new order of painting. A year 

23 Deleuze 2003.

24 Ibid.

25 Ibid, 102.

Fig. 6: Doménikos Theotókopoulos, 

called El Greco: Annunciation, about 

1576, oil on canvas, 117 x 98 cm, Madrid, 

Museo Thyssen-Bornemisza, according 

to a scheme of C. B.
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before Francis Bacon: The Logic of Sensation, Gilles Deleuze and Félix Guattari explored 

rhythm and its relation to chaos. “From chaos, Milieus and Rhythms are born.” Chaos is 

the milieu of all milieus. The milieus that have come out of chaos either consolidate or 

revert, dissolving back into chaos. In the milieu as form, chaos is never absent. Rhythm 

is created through passages from one milieu to another.26 The in-between is what rhythm 

and milieu have in common, while the emergence of rhythm between the milieus that 

have rhythm creates difference. This is why rhythm and milieus that have rhythm are 

never on the same plane.27

The consolidating and closed milieus, which are deformed in El Greco’s paintings, play 

a crucial role for Deleuze and Guattari and their approach to art. Art prevents milieus 

from stabilising, enabling instead an open and developing in-between of rhythm. In their 

philosophy of becoming, Deleuze and Guattari see rhythm as a movement between 

chaos as ground and emerging milieus. What is created by the operative identity of the 

fold is neither a static form nor a spatial juxtaposition of forms but the rhythm in its 

space-time dimension.

In El Greco’s Annunciation, the divine bursts into the world through the medium of 

painting: the Incarnation as the becoming of God emerges from the shapeless ground as 

colour. Out of the colour of the heavens, the Holy Ghost penetrates the room, followed 

by the archangel Gabriel, who surprises Mary as she is reading a book. From behind 

the dark cloud formations in the distant depths of the painting, the Holy Ghost, in the 

shape of a white dove, emerges out of the radiant yellow ground. The archangel Gabriel 

is enclosed by grey-brown clouds and blue sky, and Mary stands out against the red 

curtain. While these figures are clearly delineated from their surroundings, the celestial 

colours on the left-hand upper margin of the painting all merge into each other. The 

yellow, blue, grey-brown and red are the ground of the source of light, of the sky, the 

clouds and the curtain. They create metonymic movements in the painting, which enable 

an interaction between the formless ground and the solid forms of the figures. The yellow 

of the ground behind the clouds is echoed in Gabriel’s garment, the blue of the sky on 

the right reappears in Mary’s cloak, and the red of the curtain in the curling drapery, 

which ends in a circular form in the far right of the painting. 

Not form but colour determines the ground of the numinous divine, which streams into 

the geometrically constructed space. Like a magnetic force field, the celestial ground 

seizes the red curtain. At its centre are the fields of colour – the grey-blue of the sky and 

the yellow behind the clouds – and the Holy Ghost and the cherubs. The fiery golden 

yellow pouring out of the depths behind the parting clouds, carrying the Holy Ghost 

26 Deleuze/Guattari 1988, 313.

27 Ibid.
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in the form of a white dove, is particularly intense and powerful. This yellow breach in 

the clouds is the pivotal point of the painting. The diagonal between the archangel’s 

raised arm and a floating cherub crosses the trail of light directed towards Mary, which 

also flows into the right wing of the upper cherub. The archangel Gabriel gazes down 

at Mary and transmits the divine message, pointing towards the centre of the painting, 

the yellow ground.

Thus in the Annunciation of 1576 the archangel’s pointing finger directs us back to the 

location of the vanishing point. If we ask what is hidden behind the billowing cloud 

formation, our attention is drawn to the pictorial layers unfolding in the distance. As can 

be seen from the shadow cast by the cloud, the archangel Gabriel is standing behind Mary. 

Mary is therefore in the foreground of the painting, but her body is twisted backwards, 

so that she can see the archangel. The archangel looks at and points towards the Holy 

Ghost in the form of the white dove. The movement into the distant background, as well 

as into the horizontal width and vertical height, opens up an almost unfathomable depth. 

This pictorial depth, which sets in motion a play of ever more distant vistas, posing the 

ontological and theological question of the ground as ground of being, is opened by 

the folds of the red curtain. Abandoning the spatial staggering of the Euclidean linear 

perspective, still present in the tiled floor and the wall, the opaque curtain emerges as a 

field of colour that renders visible a movement between form and formlessness. Folded 

as Zwiefalt it mediates between the perspectival space and the radiant celestial realm 

behind the clouds. It thus establishes the revealing and concealing function of the ground, 

which opens up the unfolding of sensation. 

The folding and unfolding between form and formlessness enters the painting through 

the gazes and the constellation of gazes of the cherubs. The cherubs accompany the 

flight of the dove, and the manner of their depiction makes the Holy Ghost appear even 

more distant in the depth of the infinite ground. In both Annunciations, the entrance of 

the Holy Ghost is expressed in the form of light and shade, as well as in the drapery of 

the red curtain. In the 1570 version, which also contains a small red curtain, the warm 

light surrounding the Holy Ghost is in stark contrast to the cold light outside the room, 

highlighting the irruption of the divine into the terrestrial space. These movements in 

the painting help to emphasise Mary’s backward turn towards the archangel who is 

standing behind her. The latter points towards the Holy Ghost and the radiant yellow 

ground, which initiates a back-and-forth and circular motion between the near and far 

in the painting. While in the 1570 version the attitudes of the cherubs directed this 

movement into and out of the remote depths of the painting towards the near (fig. 2), in 

the 1576 version the movement runs across the whole painting through the constellation 

of gazes (fig. 1). Mary’s turning towards the archangel, who is standing behind her, is 

reciprocated by Gabriel’s eye contact, as he points towards the Holy Ghost and the red 

curtain. At the same time, the three cherubs at the top left look at Mary. If we follow 
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the directions of the gazes of all the figures in the painting, we see that they describe a 

circle, which corresponds to the spatial movement into the distance, towards the radiant 

ground behind the clouds and back towards the near foreground, to Mary (fig. 7). This 

movement, a vector field which exists only on the surface, intersects the geometric 

planes of the composition. 28 The diagram, as operative set of asignifying lines and fields 

of colour, moves between the fluid chaos of formlessness and the static order of form.

The movement from the foreground to the deepest layer of the radiant yellow ground 

is also reversed: the light, which emanates from the lowest layer of the divine ground, 

penetrates the room, describing a movement from the background into the foreground. 

All the lighting in the painting is arranged around the source of light behind the Holy 

Ghost. This becomes especially obvious in the tonal modulations of the archangel’s 

right lower arm and his neck, as well as Mary’s hands, face and neck, and the bodies of 

the small cherubs in the upper section of the painting, or the curtain on the left. This 

countermovement is emphasised by the three cherubs above the yellow ground, who look 

down towards the red curtain. The light bursts out of the yellow ground that seems to be 

located behind the thick, dark blue clouds. But if we look at the zone underneath we see 

that the yellow light rays are now appearing in front of the cloud formations rather than 

behind them. In this place the ground, from which the light emanates, has turned into 

rays of yellow light, which penetrate the room and create the shadow of the floating cloud.

28 I am grateful to Michael Friedman for this observation.

Fig. 7: Doménikos Theotókopoulos, 

called El Greco: Annunciation, about 

1576, oil on canvas, 117 x 98 cm, Madrid, 

Museo Thyssen-Bornemisza, according 

to a scheme of C. B.
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In both Annunciations by El Greco, the use of light and shade clearly differentiates ac-

tive and passive ground, a point that Deleuze, referring to The Baptism of Christ, has 

commented on in The Fold. El Greco’s paintings show that the darkness and the light 

are both active grounds.29 The yellow ground, concealed behind the dark clouds but 

breaking out of them in the form of the Holy Ghost, is an active ground, which takes 

hold of the forms and deforms them. What is crucial here is the colour, as well as the 

circular relation between clearly formed and formless ground, a relation that manifests 

itself in the restless twists and turns of the cherubs, until it finally streams into the room 

as incandescent light. In the 1570 Annunciation, too, the distant yellow ground articulates 

itself, breaking through the billowing dark clouds. In both treatments the red curtain is 

seized by the active force of the yellow ground from which the light source of the painting 

streams. It simultaneously dissolves in it and emanates from it, folding and unfolding.

El Greco’s paintings direct our attention to the non-visible, to the formless and the fields 

of colour, which in their visibility make the sensible experienceable as withdrawal. It is not 

recognisable objects and given forms referring to an intelligible world that take central 

stage in the Annunciations but rather the folding and unfolding of an infinite becoming. 

God is being itself and the ground of Being, and God’s incarnation raises the question 

of the ground of images, which is why Louis Marin could conclude that the Incarnation 

concerns the theological essence of painting itself.30 Representing the moment of In-

carnation, both Annunciations by El Greco show that the essence of the ground lies in 

its continuous withdrawal. But this withdrawal does not refer to the invisible world of 

ideas, which primarily shapes sensation, but marks the beginning of visual emergence. 

Not as an intelligible sign, but as a shapeless colour, the divine ground breaks into the 

visible world. The mystery of the Incarnation is translated into the process of artistic 

creation, appearing in the painting as an infinite and continuous movement of the fold 

between form and ground.

Drawing on Henri Maldiney’s essay ‘L’esthétique des rhythmes’,31 Deleuze has related this 

movement and the resulting deformation to the baroque fold, “which ceaselessly unfolds 

and folds back from both sides and which only unfolds one by folding back the other in a 

coextensivity of the unveiling and veiling of Being, of the presence and withdrawal of the 

being.”32 What is shown in this concept of the image is thus the boundless freedom of 

29 Max Raphael has shown this in a comparison of Tintoretto and El Greco. See Raphael 2009, 111.

30 Marin 2006, 195.

31 See Maldiney 1994a. Drawing on F. W. J. Schelling’s concept of the Grund (ground), Henri Maldiney 

stresses that the ground is the foundation that enables the forms to liberate themselves from the 

surroundings that have captured them. But the German word Grund, as he goes on to explain, also 

means origin and cause. Thus the ground does not only function as counterpart of the forms but also 

establishes an ontological and aesthetic relation to the world. See also Maldiney 1994b, 174.

32 Deleuze 1991, 236.
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the fold. As the fold frees itself from its supports in the painting, an infinite competition 

between the structure of the fold and the objects begins, which Deleuze demonstrates 

using two examples from the work of El Greco: 

“If we wish to maintain the operative identity of the Baroque and the 

fold, we must then show that in all other cases the fold remains 

limited while in the Baroque it experiences a limitless release, whose 

conditions can be determined. The folds seem to take leave of their 

supports, cloth, granite, and cloud, to enter into an infinite competition, 

as in the Christ in the Garden of Gethsemane of El Greco (the one in 

the National Gallery). Or else, notably in The Baptism of Christ, the 

counter-fold of calf and knee, where the knee seems the inversion of 

the calf, lends an infinite undulation to the leg, while the pinching of 

the cloud in the center transforms it into a double fan …”33

The counter-fold, the infinite undulating form and the double fans are rendered visible 

in the two Annunciations, as the fold leaves its supports – curtain, draped garments and 

clouds – and, as a detached and free structure, is transferred to the painting as a whole, 

where it captures the field of the Elements:

“The liberation of folds that are no longer merely reproducing the 

finite body is easily explained: a third entity, or entities, have placed 

themselves between clothing and the body. These are the Elements. 

We need not recall that water and its rivers, air and its clouds, earth 

and its caverns, and light and its fires are themselves infinite folds, 

as El Greco’s paintings demonstrate.”34 

In El Greco’s two Annunciations, the elements “mediate, distend and broaden” not 

only the clothing and the bodies but also the drapery of the red curtain with its deep 

shadows. 35 At first, the drapery, with its dark modulations of shade, appears in spatial 

mode. But at the moment when the curtain is seized by the pictorial ground of air, light, 

fire and clouds, its operative identity also becomes visible in temporal mode, opening 

up a communication between form and formlessness, near and far, inside and outside, 

the finite and the infinite.

 Translation: Martina Dervis (London)

33 Ibid, 241f.

34 Deleuze 1993, 122, trans. modified.

35 Ibid.
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Emmanuel Ferrand, Dominique Peysson

Versal Unfolding: 

How a Specific Folding Can Turn Crease 

and Tear into Transversal Notions

Preamble

“L’enfant naît avec vingt-deux plis. Il s’agit de les déplier. La vie de l’homme 

est alors complète. Sous cette forme il meurt. Il ne lui reste aucun pli 

à défaire.”

“The child is born with twenty-two folds. What needs to be done is to 

undo the folds. Then the life of the man will be complete. This is the 

state in which he dies: nothing is left to unfold.”

 Henri Michaux, Au Pays de la magie, 1941

 

“A work of folding and unfolding in which every element becomes 

always the fold of another in a series that knows not point of rest.”

 Stephen Heath, Post-structuralist Joyce: Essays from the French, 1984

From a mathematical perspective, folds and tears of paper may be considered dual 

notions: there is a strong relationship between the fold of a material and the expectation 

of a possible catastrophic tear. In this paper we recall a simple and concrete experiment 

that took the form of performance art. It revealed that, using only a few sheets of paper, 

while handling it carefully through folding, it is possible to avoid the pairing between folds 

and tears. To carry out its analysis, we will first review some aspects of the mathematical 
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theory of singularities from René Thom’s original viewpoint. Throughout its course we 

will touch on complex notions such as versal unfolding1 and transversality2 and complex 

texts – from James Joyce to Stéphane Mallarmé. Our conclusion will take the form of an 

additional performance to be shared with our willing reader.

This paper is concerned with a performance, which could be construed as a simple or 

naive form of scientific experiment in materials science. This experiment will be the 

starting point of a highly non-linear random walk through seemingly unrelated fields 

of science, literature and the arts. Our paper is not intended to be strictly scientific in 

essence or form, rather it should be regarded a performance in itself, one in which two 

authors, as two sides of a sheet of paper, share ideas that resonate through a process 

of folding and unfolding.

This paper is organized as follow. We begin with an account of a performance of ours, 

which took place at a workshop organized by the research group GDR Mephys at ESPCI. 

On that occasion we presented a folding process – one we refer to by a paper junction 

– which was invented for this purpose. It allows us to assemble a number of sheets of 

A4 paper to make a longer strip of paper. During the performance the robustness of 

this junction was tested in a way that involves the bodies of the two performing artists. 

We then follow with a motivation for our choice of performance. We recount additional 

experiments involving our paper junction, which we conducted in order to assess its 

robustness and its optimal usage. In the third part that follows, we gradually turn reading 

itself into a performative act, by folding in concepts of pure mathematics one after the 

other in the manner of accordion folds, in resonance with concepts that underlined 

our performance. We then continue with the fourth part of this paper, where we unfold 

and fold several sources that evoke the fold as a metaphor. We jointly discuss Joyce’s 

Finnegans Wake, a possible principle of science creativity and Stéphane Mallarmé’s poem 

un coup de dé jamais n’abolira le hazard, that epitomize our conception of the fold as 

what oscillates between metaphor and matter, between inside and outside, between 

the singular and the general. In the final part of this article, we therefore conclude with 

a performance that utilizes the very last figure in this paper – an actual folding act of the 

paper this article is printed on by readers themselves.

1 The notion of versal unfolding is a fundamental tool in the mathematical theory of singularities: 

a possibly singular object might be difficult to understand when considered per se, but is better 

understood when embedded in a family of often simpler configurations.

2 Transversality is an important notion in differential topology (Thom 1958). Two transverse submanifolds 
(e.g. curves drawn on a sphere or surfaces embedded in a three-dimensional euclidean space) intersect 

transversely if at every component of intersection (e.g. points resp. curves), their corresponding tangent 

spaces at that point generate the tangent space of the embedding manifold at that component.
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1 A paper performance

Earlier this year we were invited to perform an art and science act titled Onto the fold as 

part of the workshop Folding and Creasing of Thin Plate Structures held at the ESPCI.3 In 

what follows we will discuss this somewhat unusual contribution to a scientific conference.

Two performers get in front of an audience to prepare for what is about to happen. The 

experiment is quite simple. Its simplicity is demonstrated by making the process as 

straightforward and participatory as possible. Throughout the performance the weight 

of the two performers is used to test the strength of a paper junction designed especially 

for the performance. Its folding process can be seen in fig. 1. We refer to the resulting 

paper junction by the term Peysson Junction. The performance demonstrates how one can 

generate a firm join by folding together two sheets of standard A4 paper that combine 

through a series of steps to create a longer strip of paper. Joining together the two sheets 

does not involve any binding material (glue, thread, etc.) nor does it require any paper 

cutting. It only requires folding. 

3 A one-day workshop organized by the research group GDR MePhy and Keith Seffen (Department of 

Engineering, University of Cambridge) held at the ESPCI, Paris, March 26, 2015. See Ferrand/Peysson 2015.

Fig. 1: Junction making guide



96 Emmanuel Ferrand, Dominique Peysson

As the performance begins, four members of the audience are each handed a sheet of 

A4 paper. Each is asked to carry out a J3 folding defined as follows: folding comprises 

three equidistant folds (approximately 3 cm wide) that run parallel to the short edge 

of the paper. The four sheets of folded paper are then collected; two of them are now 

assembled according to the subsequent steps in fig. 1. Each two-sheet ensemble gets 

folded in half along the middle line that runs parallel the long edge. Each then gets evenly 

folded in three along two middle lines that run parallel the same long edge. We refer to 

the latter two steps of the sequence as a P2-3 folding. The resulting fold at this point is 

called a J3-P2-3 junction – none other than a Peysson junction. 

Once each Peysson Junction is ready, force is applied to either end of the paper-strip, 

as each performer, grabbing hold of one end, starts leaning backwards. As the angle 

increases between the horizontal axis of the paper-strip and the axis of alignment of each 

performer’s body, so does the intensity of the force applied at each end. The performers’ 

bodies and the strip of paper together form a system, whose internal tension is gradually 

increasing. The experiment goes on up until its inevitable failure – one or both performers 

eventually fall to the ground.

There are a couple possible scenarios to explain the final rupture: either it occurs as the 

paper splits apart somewhere away from the fold, or it happens at the join. In the latter 

case, either the fold at the join comes undone as one sheet of paper slides off the other, 

or the paper splits apart along one or more of the fold-lines (as a result of a possible 

susceptibility induced by folding).

During the performance at the ESPCI it was the second author who took the fall. In that 

instance, the paper splint apart away from the join. It was the paper itself that proved 

weaker, as its fibers came apart. The folded junction on the other hand remained intact. 

The rupture ran perpendicular to the long axis of the paper-strip. The split was similar 

to what one would eventually expect to get, from a sustained simultaneous pull at two 

short edges of a single sheet of A4 paper. The result is shown in fig. 3.

2 A paper trail from the discrete to the continuous, and vice-versa

2.1 Foundations

The authors’ paper performance has been designed with the intention of bringing to-

gether two pairs of concepts: ‘discrete/continuous’ as the first pair, and ‘fold/tear’ as 

the second. It differs from Origami, in that Origami typically engages a single sheet of 

paper, a fact, which renders a cohesion and resistance to the resulting object – a complex 
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three-dimensional shape, which can possibly maintain some degree of flexibility. Either 

way, the result has a lower mechanical strength compared to that of the original sheet 

of paper (or sheets of paper), since folding introduces greater fragility. 

Let us begin with discretization and continuity. Consider a standard sheet of A4 paper. 

Its overall area determines a unit of discretization – the discretization, for instance, of 

continuous text as it is set in print format.4 Through our performance we examined the 

possibility of starting from a discrete set of objects – a few sheets of paper – so as to end 

with a design of a continuous object – a continuous strip composed of joined paper sheets. 

We wished to test whether we could generate good longitudinal resistance in such a way 

that weakness does result from juncture points. We wanted to see whether structure as 

a whole could be made ignorant of underlying discreteness. Our goal, through a process 

of trial and error, was to devise an overall folded structure to be much longer but at the 

same time as strong as the original sheet of paper itself, keeping in mind there is an 

obvious force threshold beyond which our paper strip will break, and our paper-system 

will get discretized again. 

The dual pair fold-tear forms the second axis of our analysis. The fold is often used when 

one wants to rip (but not cut) paper along a certain line. A fold introduces a discontinuity 

in curvature to the otherwise flat, continuous surface of the sheet of paper. Energy, derived 

from torque applied to the planes on each side of the folded sheet of paper, is focused 

along the line of the fold – the line of flatness discontinuity.5 Tear, as a result of ripping, 

at a given point along the ling of the fold, occurs when this energy exceeds a threshold. 

Ripping begins at the point where the fold line meets the border of the sheet of paper. A 

gradual separation into two parts then occurs. In this example, fold and tear appear as 

dual concepts: where a crease is, tearing will be. 

2.2 Additional experiments

Our performance was supplemented by a series of resistance tests conducted in the 

laboratory so as to confirm the reproducibility of the art/science experiment. Five different 

tests were carried as follows (each repeated several times):

Test 1. Two sheets were joined together through a J3-P2-3 Peysson Junction (as during 

performance, see fig. 1). The resulting strip of paper was tested against sustained pull 

4 Thus, for example, text flow is governed by the logic of content, but the setting of text into printed format 

requires dividing it in relation to a unit of area – the area of the sheet of paper in question. Compare 

section 4.3 in this paper.

5 The axis of torque runs perpendicular to the plane of the paper.
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till it split apart. The remaining strip of paper – now shorter – was put to the test again 

till it split apart in its turn. Its remaining bit was then retested – now even shorter – till 

it broke apart as before. The process continued till the strip of paper got too short to be 

tested, nevertheless maintaining the J3-P2-3 join. The experiment was repeated three 

times from the beginning. Results were identical: at the end of each test the resulting tear 

ran perpendicular to the long axis of the strip, away from the junction, and rather close in 

fact to one or the other end (it was not possible to predict which end, though). See fig. 2.

Test 2. Three sheets were joined through two J3-P2-3 Peysson junctions. Same positive 

results as in the first test: the tear ran perpendicular to the long axis of the strip, away 

from the junction.

Test 3. Two sheets were joined through a J2-P2-3 Junction, namely, two folds at the first 

stage of folding instead of three. The results here were different. The strip of paper split 

apart along folds at the junction. All repeated tries of this experiments showed the same 

result: the fold ripped (fig. 3).

Fig. 2: The strip is torn away from the fold.
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Test 4. Two sheets were joined through a J3-P2-3 Junction, only this time the J3 folds were 

narrower (about 1cm instead of 3cm). The same process of experiment was repeated as 

in Test 1 with narrower folds. The results were as conclusive as with the first test.

Test 5. More sheets of paper were joined through Peysson Junctions to form an even 

longer strip of paper, leading to results as good as the first test (see upper image of fig. 4).

Further experiments were conducted varying in paper quality and size, using again a 

J3-P2-3 Peysson Junction, as in test 1. Variation did not lead to significantly different 

results. Of course, the use of softer paper (such as paper towels) resulted in the junction 

coming apart even when little force was employed. A certain degree of paper density 

seems necessary to ensure junction stays intact. There appears to be a bifurcation 

threshold, depending on paper density, across which behavior changes drastically. Below 

the threshold, the two (or more) units of paper come undone by sliding off each other. 

Above the threshold, the break happens as a result of a tear in one paper unit, away 

from the junction.

Fig. 3: Weaker junction. 

Fig. 4: A longer strip.
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3 Unfolding mathematics with a qualitative twist: Thomism

The tearing of the paper in the above experiments points towards a possible catastrophe, 

that is, a sudden change in the continuous system. Instead of carrying out a quantitative 

analysis of paper resistance to stress, we wish to present the reader with qualitative 

mathematical ideas, and discuss the relevance of folding to mathematics in relation to 

the paradigms of continuity and discreetness.

The French mathematician René Thom (1928 – 2002) is associated with two notions of 

folds and continuity noted above. In 1959 Thom was awarded the Fields Medal for his 

work in the field of topology 6 (roughly speaking, the study of shapes up to continuous 

deformations). He later became a major contributor to the related field of singularity 

theory – the classification of local behavior of various geometrical objects and mappings. 

He is often associated with catastrophe theory, which had its moment in the limelight 

in the 1970s (more on this in the sequel). Catastrophe theory consists in using ideas 

from singularity theory to describe the sudden changes that may occur in the qualitative 

behavior of concrete systems that arise in fields such as biology or economics.7 It is 

possible Thom’s original ideas were over-interpreted by his followers and epigones.8 

Catastrophe theory was initially not seriously considered; it became a subject of ridicule 

when it was rather naively adopted by some in order to introduce a little bit of mathematics 

into the social sciences, as if such proof of rationality was needed to begin with. In fact, 

catastrophe theory provides a useful conceptual system to analyze phenomena, which 

were previously understood using more technical, quantitative models. It provides a 

simple language with which one can interpret and unify disparate phenomena; indeed, 

Thom was not afraid of simplicity. For him, non-trivial concepts were all the more inter-

esting when they could be expressed in a simple, non-technical form.9 Later on during the 

1980s, catastrophe theory was eclipsed by chaos theory, not in opposition to catastrophe 

theory, but partly influenced by it. Thom was something of a free electron in the French 

mathematical landscape, at a time when the Bourbaki group exerted the most influence. 

Bourbaki’s radically formalist line ran opposite to Thom’s ideas.10 We shall return to this 

issue in Section 4.2.

6 He was awarded for his work on cobordism theory.

7 A full account of catastrophe theory can be found in Arnold 1992. Let us briefly cite from Tsatsanis 2012, 

217: “[catastrophe theory] has as its goal to classify systems according to their behavior under perturbation. 

When a natural system is described by a function of state variables, then the perturbations are represented 

by control parameters on which the function depends. This is how a smooth family of functions arises in the 

study of natural phenomena, […]” one of its members being a function with critical points.

8  See for example Zeeman 1977 and Smale 1978 for an account of the polemics induced by the 

popularization of catastrophe theory in the 1970s.

9 Thom signed a disapproving academic report on Jacques Derrida, claiming that his convoluted, difficult 

language does not hide any deep or subtle thought. See Smith 1992.

10 See for example Thom 1970.
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3.1 Ontological anteriority

Of prime importance to us is the anteriority principle Thom promoted, namely, the 

principle of the ontological precedence of the continuum over the discrete.11 For Thom, 

discrete objects arise as accidents in the continuum,12 or they may come about as topo-

logical invariants of continuous objects.13 The anteriority principle reverses the traditional 

order in which mathematical objects are typically introduced: in the classroom, we are 

first taught the system of natural and negative numbers (0, ±1, ±2, ±3, …). The system 

of rational numbers is then introduced,14 which is then completed to form the system 

of real numbers or the real line – the basic continuous object, used, for example, to 

model our intuition of time. Thom proposed to reformulate mathematics from this 

viewpoint, starting from what to him was the most fundamental object – the line drawn 

on a chalkboard.15 Even though he himself admitted his program could not be carried 

out formally,16 he did not see this as a failure, as he often expressed a critical view of the 

formalization of mathematics.17

3.2 Unfolding

How does this reformulation, that is, the anteriority principle, as what commences 

from the continuous, manifest itself in Thom’s theory? The concept of versal unfolding 

in singularity theory that we are roughly going to sketch now is partly based on Thom’s 

ideas; it illustrates, as we shall see, the anteriority principle discussed above. Singularity 

theory attempts to understand a possibly complicated singular (as opposed to regular) 

object by embedding it (or unfolding it) in a continuous family of objects of a similar, 

albeit simpler, nature.18 By doing so in a suitable manner, one often observes a natural 

stratification of the parameter space of this family, which reflects the complication of 

the object corresponding to a specific value of the parameter. The stratification often 

exhibits a rich structure, which may give some important information on the original 

singular object under study. An important idea in singularity theory is that one may 

identify two apparently different objects if one can pass from one to the other using a 

transformation, which preserves attributes of the objects in question. In many cases, 

modulo those identifications, one can find an unfolding, which is at the same time not 

11 Thom 1992.

12 Such as an arbitrarily marked point on a line, or the moment when the long hand of a clock lands at ‘12’.

13 Such as the number of turns of a rope around a mooring bollard.

14 By ‘rational number’ we mean a positive or negative fraction such as 3/4 or 5/3.

15 Thom 1990. See also Thom 1992.

16 As remarked in Thom 1992.

17 Thom actually promoted the idea that anything stated rigorously is insignificant. Cf. Thom 1968. See also 

Salankis 1999, sections 4.3 and 4.4.

18 See Thom 1975, especially chapters 3, 4 and 5.
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too complicated but general enough to cover all possible qualitative configurations. This 

is a versal unfolding.19

Fig. 6: Unfolding an inflexion.20 

19 Here we understand ‘versal’ as in ‘universal’ or ‘transversal’. Arnold 1992 is a good introduction to the 

mathematical definitions of these concepts.

20 The chalkboard illustrations are a homage to Thom, who praised chalk and blackboard.

Fig. 5: Fold and cusp.
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3.3 Folds and cusps

We now come to a smooth model of a fold ubiquitous in catastrophe theory, which will 

provide at the same time an illustration of the concept of unfolding. In fig. 5 one sees a 

blackboard drawing of a local model of a regular mapping from a domain of the plane 

back onto the plane: a local model of smooth folding. 

The mapping is defined as follows: the points of the domain are first embedded in 

three-dimensional space following the picture, and then mapped back to the plane using 

the vertical projection. Some points in the plane below are the image of exactly one point, 

while others, as a direct result of folding, are the image of three different points of the 

embedded domain above. This dual characterization of points defines two regions in the 

image below – the region of single-source points, and the region of triple-source points. 

Exceptional points lie at the border between these two regions. The exceptional points 

form a border curve – a cusped border curve 21 – consisting of two branches, which meet 

at a special point – a singular point – in the image plane. The set of points in the domain 

that map onto the cusped curve form a smooth curve.22

21 A cusp is a singular point of a curve, which locally, when located at the origin of the (x,y)-plane, its 

neighborhood looks like that of the curve {y2 = x3}. The fact that a cusp is created during this projection 

is noticeable since, in general, the projection of a smooth spatial curve does not have any cusps, but 

is itself a smooth curve in the plane, possibly with some isolated self-intersections, called nodes (i.e. 

a point that locally looks like the intersection point of two lines). See Hartshorne 1997, 310. When 

one works over the complex numbers and examines projections of complex surfaces (of degree > 2) 

into the plane, then every border curve generically must have cusps and nodes (the “border curve” 

in mathematical jargon is called branch curve, being the projection of the ramification curve. The 

ramification curve is, one might say, the curve along which the surface is folded with respect to the 

projection). For a survey on branched coverings and the special relations between the nodes and the 

cusps of a branch curve, see Friedman/Leyenson 2011.

22 Note that the number of points in the pre-image of a point along the cusped curve equals two. A more 

formal description of fig. 5 is as follows. It represents a folded surface, embedded in three-dimensional 

Euclidean space, R3, and then mapped back into the plane by projecting in the vertical direction. The 

surface is parameterized by a domain in the plane, for which we will use ( t, s) as coordinates (we 

assume that this domain is a neighborhood of the origin (0,0)). We will map this domain in R3 using the 

following formula: (t,s) à ( x = t, y = s3 – ts, z = s) 

The image of the domain under this map is the folded surface in the picture. The real fold is actually 

achieved when this surface is mapped to the plane by the vertical ‘forget z’ projection, so that the map 

from the domain to the image plane takes the following form: 

  f :(t,s) à ( x = t, y = s 3 – ts) 

Its differential is not of maximal rank 2 if and only if 3s2 = t, i.e. on the parabola (note that when this 

relation between s and t is substituted for the equation of the surface, we obtain the following curve in R3, 

parameterized by s: s à ( 3s2, -2s3, s), which would be the smooth ramification curve). Outside this curve, 

it is a local diffeomorphism. The curve is mapped by f onto another curve parameterized by s as follows  

  s à (x = 3s2, y = -2s 3). 

This curve has a singular point at s = 0, called a cusp. In the image plane, this curve separates the regions 

where a point has one or three pre-images.
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In thermodynamics a similar picture gives a precise account of the transition from meta-

stable states to stable states. Note that this and was well known long before catastro-

phe theory came about.23 Many prototypical examples from catastrophe theory can be 

examined through the metastable-stable thermo-dynamical paradigm. These examples 

arise in biology, economics or the social sciences, in contexts in which, at least on a 

qualitative level, a model involving the minimization of some energy can be introduced.

3.4 Unfolding an inflexion

The mapping between two-dimensional planes, presented in fig. 5, introduces a model 

of cusp singularity. However, the very same picture also corresponds to an unfolding of 

a vertical inflexion, as can be seen in fig. 6.

The folded surface (the above domain) can be foliated into curved lines that are param-

eterized by the real line,24 as if one is looking at a movie, which tells the story of a curve 

that develops and changes over time. The curve with the vertical inflexion is singular in 

the sense that it is qualitively isolated within this family: when it is perturbed the inflexion 

disappears. Perturbed in one direction, two distinct bumps appear, perturbed in the 

other direction, there are none. Either way, the perturbed curves run perpendicularly 

to the vertical direction. The vertical inflection corresponds to the singular moment, 

where two bumps meet and annihilate each other. Here lies the idea that underlies 

unfolding: a singular object often corresponds to a limit process, as a boundary or a 

wall crossing – an accident in continuity. To be understood as such, a singular object 

cannot be studied on its own, one has to include it in a family of neighboring objects so 

it could be deformed. From this viewpoint, singularity – and hence also a discrete object, 

viewed as singular – becomes a relative concept.25

23 See for example geometrical methods in thermodynamics introduced by Gibbs 150 years ago.

24 The same piece of surface embedded in R3 can be used to understand the deformation of a vertical 

inflexion. Using the notation of footnote 22, for any fixed value of the parameter t, which we should now 

consider as representing time, we can cut a t time-slice of the surface to get a curve parameterized by 

s in the (y, z) plane. For t = 0, this curve s à (y = s3, z = s) has a vertical inflexion: the vertical direction 
(z axis) is tangent to this curve, but the curve goes through this tangent at the origin. As t varies, the 

curve is perturbed. For t positive, the curve gets two bumps: the inflexion is resolved into two generic 
(quadratic) tangencies (i.e. one obtains a function with a minimum and a maximum, to which two lines, 

parallel to the z axis, are tangent). When t is negative, the curve is transversal to the vertical direction 

and has no tangency with any line parallel to the z axis. The curve at t = 0 is singular in the sense that 

it is the only one of its kind in this family, i.e. it has only one tangency point with the z axis and it is of 

multiplicity 3. Perturbing it in both directions gives rise to a curve with simpler tangencies, if any. This 

family of curves is called an unfolding. The union of all those curves for all possible values of t forms our 

original folded surface.
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3.5 Smooth folding versus paper folding

To make the theory precise, these considerations should be developed in the context of 

smooth objects.26 Singularity theories can be applied to describe the physics underlying 

the experiment leading to catastrophe – the disruption in continuity corresponding to 

the tearing of our paper strip system. The folds (or curves) involved would then be rather 

abstract: they would lie within energy levels in some complicated high-dimensional phase 

space. Nevertheless, one should not confuse this approach, where the idea of folding is 

abstractly hidden, with our simple paper strip system – a concrete folded sheet of paper. 

In reference to smooth folding as in fig. 5, it is important to note, that if we were to try to 

realize a similar cusp singularity in an actual model, we would need for that purpose a 

plane domain made out of an elastic, stretchable material. A sheet of paper is not a good 

candidate, as it exhibits little plasticity in this regard. A paper model analogue of cusp 

singularity will hence look slightly differently. It can be found in the simple singularities 

that occur in the planar folding of a sheet of paper (as when one folds a city map, see 

fig. 7). The fold lines of a smooth model are replaced by line segments, along which 

the sheet of paper is creased. Cusp singularities would correspond to the points where 

25 We would like to draw attention to Gilles Châtelet (1944 – 99), a highly original philosopher and 

pamphleteer, who in L’enchantement du virtuel, Châtelet 2010, presented an interesting analysis of 

an idea closely related to that of unfolding. In the context of his work, ‘virtual’ should be understood 

similarly to the principle of virtual work in mechanics, where the static equilibrium of a system 
(for instance a physical structure such as a bridge) is embedded in some space of possible virtual 

deformations of its structure. Also cf. Salanskis 2012 for a discussion on the epistemology of Thom’s 

catastrophe theory.

26 Using technical terms, smooth objects are continuous and ‘suff iciently differentiable’ in a sense 

appropriate to the given mathematical context.

Fig. 7: Flat folding.
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the line segments meet in the simplest possible way, namely, instances where four line 

segments meet. One can prove that non-plasticity of paper induces a constraint around 

each cusp singularity: opposite angles must add up to a flat angle. More complicated 

non-generic singularities, where a larger (even) number of segments meet, may occur, 

but one can check experimentally that they do not occur in random flat paper folding.

Nevertheless, complex non-generic singularities are of interest when one designs an 

origami folding. It would be interesting to further develop its analogy to the classical 

smooth theory of singularities, in order to understand, for example, how these more 

complex singularities can be considered a superposition of simpler ones, and how a 

small perturbation may induce a resolution of the complex configuration into a collection 

of simpler configurations. To the best of our knowledge, such program has not been 

carried out yet. 

In fact, the smooth setting, which at first glimpse appears more complicated and abstract 

than simple paper folding, offers many advantages and is quite flexible, once notions of 

differential geometry are introduced. However, a likely paper folding analogue promises 

to have more of a discrete flavor: even though a sheet of paper is a continuous media, 

the resulting pattern of creases is a graph whose edges are segments of straight lines, 

which is completely determined by discrete set of data.27

4 Convoluted literature

In the former two sections, the fold presented the possibility of bridging the distinction 

and hierarchy between discrete and continuous. It submits itself promptly as a philosoph-

ical, as will be discussed shortly in section 4.3. This is also the case with contemporary 

art as in Roy Ascott’s La Plissure du texte, with contemporary music as in Pierre Boulez’s 

Pli selon pli, portrait de Mallarmé, or with literature as in Joyce’s Finnegans Wake. In this 

section “twisted [and] intricately folded” will also mean convoluted. Accordingly, in Fin-

negans Wake, we find convoluted characters in folds. As we unfold what the convolution 

has intricately folded, we reach a higher viewpoint. It is no longer considered speculative 

nowadays to suggest that creative thinking differs profoundly from Aristotelian logic or a 

Boolean hypothetico-deductive process. Syncretic thinking, as clearly explained by Anton 

Ehrenzweig in The Hidden Order of Art,28 is an intuitive and unconscious critical process, 

27 In the smooth setting, the curves along which the surface is folded (and especially their image when 

projecting into the plane, i.e. the branch curves) gives rise to combinatorial data regarding the surface 

itself so that one can reconstruct the covering using that data together with some additional geometrical 

data. This is the subject of Chisini’s conjecture, proved in Kulikov 1999; Kulikov 2008. See also 

Friedman/Leyenson 2011.

28 Ehrenzweig 1967.
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which can give us access to a more powerful vision of complexity. Thinking in terms of 

convolution offers a modality for this function of thinking. Scientific creativity may come 

under it, as it requires researchers to think differently as they pretend to when writing 

their formal articles. We therefore consider how this convoluted viewpoint could provide 

a different perspective on other fields of the written domain, such as philosophy or poetry.

 

 4.1 Finnegans Wake

In his essay Ambiviolences: Notes for reading Joyce29, Stephen Heath observed that, in 

interpreting Joyce’s Finnegans Wake, critics took to two opposite routes. According to one 

line of interpretation, the text was regarded as absurd and unreadable, while according to 

the other it was deemed an enigmatic message to be decrypted.30 Heath himself rejected 

both approaches: the first as it a priori denied the prospect of opening itself up to many 

fragments of meaning, the second as it missed the creative reading the text calls for. 

The second approach, which supposes a hidden message, assumes the text to have an 

immanent unity and continuity – a reading, which Heath believes to be too restrictive. It 

is rather that the text offers multiple fragments of meaning, which are traced and retraced, 

colliding and breaking ceaselessly in a textual play that resists homogenization.31 There 

is no single style; instead, there is dissolution into a network of modes of expression. 

Narrative structure is discontinuous; narration is ambivalent, discouraging an attempt 

to identify a specific voice. Heath uses the analogy of the fold to describe this peculiar 

construction: “[…] Finnegans Wake is offered as a permanent interplication, a work of 

folding and unfolding in which every element becomes always the fold of another in a 

series that knows no point of rest.”32 Finnegans Wake should not be read as assuming a 

permanent state of meaning, and reading becomes a creative experience for the reader. 

The novel is an open piece of art. Referring to Umberto Eco, this means it cannot be 

reduced to a single interpretation.33 The text is an endless source of meanings. Beyond 

a purely informative discourse, the folded and refolded text – convoluted – stimulates 

the expectations of the reader.

29 Heath 1984, 31 – 68.

30 Ibid, 31.

31 Ibid, 31, 32.

32 Ibid, 32 (italics is in the original).

33 Eco 1965, 20.
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4.2 Crumpling scientific papers

Against this background of a serial unfolding “that knows no point of rest” and resists 

any clear, distinct meaning, thereby affording unfolding a flux of meanings, consider 

scientific papers, which present themselves as examples of an informative text designed 

to have a clear, linear, discrete reading, without creases or folds, in short, unambiguous 

(an assertion which itself would be interesting to question). However, creativity in science 

cannot be reduced to this type of process. The mathematician Henri Poincaré tried to 

explain in La Valeur de la science how much his own discoveries owe to the wandering of 

thought and daydreaming.34 Due to present-day academic norms,35 the production of 

hard-to-digest, formal, technical literature is experiencing exponential growth. Comput-

er-generated mock-up scientific texts are accepted for publication in scientific journals 

and conference proceedings.36 Scientific knowledge is not reducible to the content of 

scientific texts. Should all scientists disappear from this planet, it is very unlikely science 

could be reconstructed from archived scientific texts. One could say Joyce’s writing is 

parallel to true scientific practice, in that it gives us a way to perceive the indistinct, the 

random, the discontinuous in seemingly linear flows.

The Bourbaki project is a singular milestone in the landscape of formal mathematics 

and scientific writing.37 Bourbaki was a collective of mathematicians who undertook 

to provide modern mathematics with a formally sound foundation through a unified 

approach.38 Although a great deal of work was done, leading to many useful results, the 

project remains a fascinating but unattainable ambition. Eighty years since, one is bound 

to admit this endeavor is beyond human capabilities, as few can absorb mathematics this 

way. Thom, who was mathematically active as the Bourbaki project reached its zenith, 

steered away from this circle of ideas. Interestingly, differential calculus, upon which 

Thom’s smooth paradigm is based – a paradigm invoked when one wishes to establish 

a formal account of the continuum and of singularity theory – was developed by two 

convoluted writers: Isaac Newton (whose abundant obscure writings extend far beyond 

science) and Gottfried Wilhelm Leibniz.39

34 Henri Poincaré wrote a whole paper about this process. See Poincaré 1908.

35 The so-called publish-or-perish imperative.

36 Several papers randomly generated by Mathgen were accepted for publication after a peer review 

process. See http://thatsmathematics.com/mathgen

37 Bourbaki 1939.

38 A good introduction to Bourbaki can be found in various works by the French poet Jacques Roubaud. See 

Roubaud 1997.

39 Leibniz himself uses the fold as a metaphor to a more or less explicit degree: Deleuze famously noted in 

reference to Leibniz’s monadology: “In the labyrinth of the continuous the smallest element is not the 

point but the fold.” See Deleuze 1988, 9.
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4.3 Folding mystery

Many authors utilized the fold as a metaphor: Martin Heidegger (the fold of our being), 

Maurice Merleau-Ponty (the fold as chiasmus or interlacing), Michel Foucault (the fold 

of in and out), Gilles Deleuze (surface fold), Jacques Derrida (especially in his writing 

about Joyce, the fold as the impossibility of simple self-identity) and Jean-Luc Marion 

(fold of the given), to name a few.40 This goes beyond the scope of this paper; here we 

will merely mention the work of Quentin Meillassoux 41 on Stéphane Mallarmé’s seminal 

poem Un Coup de Dés Jamais N’Abolira Le Hasard.42 This poem is a landmark of French 

literature, possibly of the entire literary corpus. Published at the very end of 19th century, 

it represented a radical rupture: the poem, whose form in print is of primary importance, 

exhibited an intriguing interplay between the two-dimensional page and its non-linear 

typographical layout. Its syntactical structure was highly non-standard, in particular 

in its use (or lack of use) of punctuation. With about 700 words per 11 pages, a vast 

majority of the paper surface was left blank. The words, printed using various font sizes, 

were laid out in a succession of clusters, which may evoke foam on the crest of waves. 

Meaning, if indeed there is any, has remained mysterious for more than a century; 

the poem has been the subject of countless studies and interpretations. Like in the 

case of Joyce’s Finnegans Wake, it has been considered absurd and unreadable by many, 

or, alternately, a challenging encoded mystery by others. Quentin Meillassoux recently 

proposed a cryptologic interpretation,43 largely based on a certain ‘discrete’ numerology. 

More precisely, it involves a careful consideration awarded to all words and signs in their 

respective positions – the most basic ‘discrete’ elements of text. Meillassoux’s precise, 

quantitative, documented work ignores in effect most of the poem’s ‘geometry’ (layout, 

varying sizes, global and local blank regions). Meillassoux is nevertheless able to draw 

rather convincing conclusions from his analysis. Roughly speaking, some numbers are 

not there by accident; it seems that Mallarmé adopted a hidden structure governed by 

obscure computations. We note that this discovery, if confirmed, is but one interpretation 

that, albeit appealing, still disregards more material, visual aspects.44 We would like 

to suggest a more ‘folded’ approach, one possibly based on manipulations (yet to be 

discovered) of the poem’s underlying sheet of paper used here as the two-dimensional 

40 For these fold metaphors see Cormann/Laoureux/Piéron 2005. 

41 Meillassoux 2011.

42 Mallarmé 1897. 

43 Kaplan 2012.

44 Poetry was for Mallarmé a form of a new religion, encompassing other forms of artistic expression: it has 

its own musicality, and also in this poem, a material and a visual representation. See Meillassoux 2015, 

65, 104.
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space of poetry.45 Even if an actual act of folding is abandoned, we feel that the inherent 

folded nature of those clusters of words – suggesting waves of a rough sea – should be 

taken into account. It seems to us that a third folded approach should be followed similar 

to the one suggested by Heath: the words themselves would be folded and unfolded onto 

each other. This would not substitute the intriguing search for the ultimate (discrete) 

decryption à la Meillassoux, but would run parallel to it.46

Looking at the history of ideas, one observes that the fold, as a metaphor, has often 

been used in philosophical dialectical contexts. It has been invoked to deal with single 

and multiple, identity and difference, inside and outside or the constituent and the 

constituted. The image of the fold appears to be an effective metaphor whenever one 

contemplates complexity. As evidence, one only need consider its many occurrences in 

contemporary philosophy. Creative thinking is based on a complex relationship between 

all manner of rational and irrational thought. In that sense, convoluted images support 

creative imagination. The writings of Joyce, Thom and Mallarmé invite a creative reading 

that allows the reader to follow convoluted paths and nebulous themes. 

Our existing models of complexity required revision, which prompted the emergence of 

chaos theory and of the notion of a complex system. Folds, convolutions, windings and 

labyrinths are all fruitful methodologies that help to structure, represent and rethink 

the complexity of our world. We followed here some folded dualities of our own, in a 

discussion starting from a folded paper junction. The fold has often been associated with 

infinitely divisible continuity. Our physical performance has taken an opposite direction, 

creating a structural junction from the discrete to the continuous. Our bodies were fully 

engaged in a dynamic one-dimensional experiment, experiencing the moment when 

the continuous broke into the discontinuous. The sudden toppling over of one of the 

performers brought on catastrophe. In the same vein, we presented a patchwork of 

mental images, dealing with seemingly unrelated subject matters, hoping readers will 

find their way to continuously combine them.

45 Mallarmé gave much thought to the layout of book leaves in the folio.  Different combinations of 

paper-sheets suggested rhymes.  The book binding process was important to Mallarmé, who considered 

the fold to be the central abyss, the “discontinuity of meaning,” the nonsensical part associated to text 

signification. The white part of the page he thought of as the void. See Meillassoux 2015, 59.

46 Randomness (le hasard) was of great significance to Mallarmé. See Meillassoux 2015, 39.
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5 Appendix: instruction for a printed performance

The sense of mystery suggested by the labyrinthine convolutions of folds is crucial to their 

nature. The fold can hide what has been laid down on paper. It offers an effective way 

to encode messages. We explore this theme here in a proposed folding experiment. We 

encourage the reader to print and fold the very last figure (fig. 8) following our instructions 

below. It brings us back full circle to Henri Michaux, the poet and painter cited at the 

very beginning of this paper, as the experiment refers to a modified (unnamed) ink print 

of his – this paper’s last figure.47 

Note the markings at the top and bottom of the very last image: points, thin long seg-

ments, thick short segments. The reader will need to carefully fold the sheet of paper 

several times parallel to the long edge. The paper should be folded in ‘V’ shape (a valley 

fold) across each line that joins a matching pair of thin long segments – a line that runs 

parallel to the long-edge of the paper. The resulting fold should stretch across the entire 

length of the paper from top to bottom. In a similar manner, the paper should be folded 

in ‘^’ shape (a mountain fold) across each line that joins a matching pair of thick short 

segments. Once this is done, each thick line should touch a corresponding point – the 

continuity point. The folds should be carefully flattened. Once all folds are accomplished, 

the reader will observe the result across the flattened width of the paper.48

47 Henri Michaux, Sans titre, ca. 1975, ink on paper (mongrammed at lower right), 74,5 x 105 cm, Belgium, 

Private Collection. This piece by Henri Michaux will be included in the future in a catalog prepared 

by Micheline Phankim, Rainer M. Mason and Franck Leibovici. The catalog will present prints of his 

paintings and drawings, the majority of which feature in private collections.

48 Should the reader find the printed image too small to fold, he or she may download the original at: 

http://webusers.imj-prg.fr/~emmanuel.ferrand/fold/.
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Sandra Schramke

3D Code: Folding in the Architecture of 

Peter Eisenman 

Fig. 1 Chaos theory, René Thom.

“A ‘cryptographer’ is needed, someone who can at once account for nature and decipher 

the soul, who can peer into the crannies of matter and read into the folds of the soul.”1

In the 1990s Peter Eisenman (b. 1932), who since the 1960s has been regarded as one of 

the most advanced contemporary theorists and practitioners of architecture, developed 

with the form of the fold a new architectural language based on texts as well as on 

mathematical models. He supported this with Gilles Deleuze’s (1925 –1995) book Le Pli 

(1988), new phenomenology – as presented for instance by Gernot Böhme (b. 1937) in 

Atmosphäre: Essays zur neuen Ästhetik from 1995 – and René Thom’s (1923 – 2002) chaos 

1 Deleuze 1993, 3. 

X1

X3

X2

D

E
A

G

B

C

F
M



116 Sandra Schramke

theory.2 For Eisenman the fold is a form that bridges inner and outer worlds, geometry 

and the description of mental states. At the same time, the fold is able to build on the 

geometry of the grid as well as on the theories of perception and mathematics. Historically, 

the fold can be traced back in particular to the metaphysics of Leibniz’s Monadology.3 

With the example of the drapery characteristic of the Baroque age, Leibniz (1646 –1716) 

searched beyond systematic rationality for new concepts of singular phenomena, not 

in the logic of an object, but in accordance with the idea of an “aesthetic, […] poetic 

thing.”4 In his Monadology, which has come to be known as a theodicy, Leibniz thus 

distanced himself from contemporary philosophical currents of atomistic and substance 

theories.5 Rather, he translated the phenomenon of folded cloth into a general concept 

and linked this to the idea of the universe, which he “describes as a continuous body 

that is ‘not divided, but transfigured in the manner of wax, and folded in various ways 

like a tunic.’”6 In this way, Baroque drapery as formalized matter was able to avoid the 

accusation of the mere decoration of the clothed body and, with reference to Aristotle’s 

theory of elements, be transformed into a mental object. As Deleuze notes, Leibniz’s 

metaphysics is based on a conception of the world that is oriented not to Descartes’s 

(1596 –1650) unity of the manifold, but to a multiple of the event. Here, the event is 

materialized in the form of folds, which according to Deleuze are actualized in the soul. 

In the following, the influence of the theory of monads on Eisenman’s architecture will 

be explored. The argumentation follows on the one hand the logic of the geometry of 

the fold, which as a Euclidean projection displaces the form of the grid, and on the other 

the logic of American pragmatism, whose history has given rise to a variety of forms, 

including, in particular, tensegrity structures. These forms in turn can be interpreted as 

direct precursors to the fold. To finish, I will examine the theme of the fold’s space of 

representation, which in Eisenman’s architecture not only takes account of standards of 

communication, but also brings about a singular affective space – one that is characteristic 

of the style of the architectural fold.

Geometry of the Fold

Eisenman thus takes up the neoplatonic tradition of the theory of monads and transfers 

the fold onto his architecture. He situates this form, which is so characteristic of his 

designs of the 1990s, between body and soul, geometry and perception. At the same 

time, the fold in its genesis draws on the grid as one of the key foundations of archi-

tectural design. The fold makes the grid a condition by undertaking on the basis of the 

2 Böhme 2013, 385 – 412.

3 Strickland 2014.

4 Vogl 2003.

5 Adams 1998.

6 Bredekamp 2004, 16.
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gridded surface irregular, singular displacements of the same. The grid thus becomes 

the elementary point of reference from which Eisenman simultaneously detaches the 

fold. These irregular, singular displacements within the grid are articulated by Eisenman 

with the idea of an architecture of the informe.7 Furthermore, Eisenman understands the 

fold as a connection to the outside resulting from the removal of the distinction between 

figure and ground. In this connection, Eisenman makes use of language, to in turn with 

reference to Deleuze describe ex-pli-cation as both concept and action in the process of 

folding and unfolding. To give the form its own ontological status while simultaneously 

bypassing the logic of the grid, Eisenman replaces the concept of the grid with that 

of the frame, which he borrows from a book by his long-term friend Jacques Derrida 

(1930 – 2004), The Truth in Painting.8 With the frame Derrida examines with the help of the 

garment and with reference to Immanuel Kant the dichotomy between ergon and parergon 

in order to explore the difference between an object’s in- and extrinsic qualities. Along 

the division between inside and outside, the frame in this assessment can be perceived 

as a marking with varying degrees of formalization. Derrida in The Truth in Painting 

gives the example of columns around a building, with which “is announced the whole 

problematic of inscription in a milieu, of the marking out of the work in a field of which it 

is always difficult to decide if it is natural or artificial and, in this latter case, if it is parergon 

or ergon.”9 With reference to Derrida, Eisenman develops the image of a subordinate 

dimension of the folding of the space in which this folding is inserted. According to the 

philosopher and architectural theorist John Rajchman (b. 1946), this insertion in space 

can itself be considered as active geometrization, but which in distinction to origami is 

not reduced to a figure, but incorporates the milieu as part of the folding. This is realized 

by Eisenman for example in his design for Rebstockpark, in which he crosses over the 

fixed limits of the site to include what is external to the site in the folding: “The Rebstock 

fold is thus not only a figural fold as in origami – not a matter simply of folded figures 

within a free container or frame. Rather the container itself has been folded together, or 

complicated, with the figures.”10 

Here, the central question circles around the potential of the peripheral, which has 

also been touched on by Aby Warburg (1866 –1929) with his concept of the “bewegtes 

Beiwerk” (animated accessory). In this context, Eisenman pursues with the concept 

of the index taken from linguistics the idea of a potential available to the fold found in 

the concepts of ex-pli-cation and un-folding. In this way, architecture, understood as 

text, can be understood as the constitution of the absent.11 Here, Eisenman pursues 

a conceptual thinking with regard to the diagram, which on the basis of the different 

7 Eisenman 2007b.

8 Derrida 1987.

9 Derrida 1987, 59.

10 Rajchman 1998, 21.

11 Eisenman 2004a, 299f.
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possibilities of classification and its interstices, moves along the dividing line between 

order and disorder, complexity and the reduction of complexity: “The diagram is indeed 

a chaos, a catastrophe, but it is also a germ of order.”12

The diagram thus offers another approach to Leibniz’s metaphysics. If the latter was still 

characterized by the idea of divisions, Deleuze reverses the idea of unity into that of the 

multiple: “Classical reason toppled under the force of divergences, incompossibilities, 

discords, dissonances. But the Baroque represents the ultimate attempt to reconstitute a 

classical reason by dividing divergences into as many worlds as possible, and by making 

from incompossibilities as many possible borders between worlds.”13 With reference to 

Deleuze’s concept of the multiple, Eisenman also clearly disassociates himself from the 

much-quoted mathematician and architectural theorist Leon Battista Alberti (1404 –1472), 

who in the play with geometries described their functional unfolding.14 In contrast to 

Alberti, who derived all variations of the multiple from the ideal and real grid, Deleuze 

defines the multiple inversely as a condition of unity: “The multiple is not only what has 

many parts but also what is folded in many ways.”15 Thus, while Alberti’s considerations 

take unity as their point of departure, for Deleuze there is no finite unity; rather, there are 

endless possibilities of the multiple in the unfolding. Unlike Alberti therefore, Deleuze’s 

considerations on the fold do not result in a universal model. Neither Cartesian space 

nor Aristotelian place is accepted into his approach. 

The Inclined Plane as Precursor to the Fold

Eisenman’s architecture of the fold, in its concretion, can, however, be traced back to direct 

precedents, which were initially still characterized by the geometry of the plane. In his 

manifesto The Oblique Function from 1966, the architect and philosopher Paul Virilio (b. 

1932) distances himself from modern architecture insofar as this is based on a separation 

of functions.16 Virilio reverses this principle. Together with the architect Claude Parent 

(b.1923) he developed at a distance to modernism the form of the inclined plane, which 

unified functions instead of separating them. Virilio and Parent both derived the form 

of the inclined plane from their perceptual experiences in bunkers during World War II, 

which they combined with the concept of a multiplication of life taken from developmental 

biology, and applied to the spatial layout of their design for Maison Drusch from 1963 

near Versailles.17 As with a stage, the inclined plane provides a possible space for actions. 

12 Deleuze 2003, 102.

13 Deleuze 1993, 81.

14 Alberti 1454, 16f.

15 Deleuze 1993, 3.

16 Virilio 1997.

17 Virilio 1997. Cf. also Maak 2010, 20.
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Hence, at the center of this architecture are not fixed allocations or occupations of place 

and space following a Platonic model, but events linked to time. In comparison, Deleuze 

alludes in the concept of the event – which he derives from Leibniz’s theodicy,18 and 

originally described the demise of God’s omnipotence in the modern period – to the 

loss of hierarchically structured centeredness.19

The event is defined with regard to the fold as a phenomenon of decentralism, which in 

geometrical terms represents a deviation from the regularity of the grid. To understand 

this better, it is worth looking briefly at the origins of the grid.

Fig. 2 Ensembles d’édifices, Jean-Nicolas-Louis Durand.

The Origin of the Grid

In 1803 at the École polytechnique in Paris, the French revolutionary architect Jean-Nico-

las-Louis Durand (1760 –1834) introduced the schematism of a plan grid in the form of 

graph paper, which provided the basis for systematic geometrization. Durand used the 

grid to develop model books for elementary types of functional buildings.20 True to militant 

enlightenment ideas, the clear and evident elements were intended to establish a lasting 

18 Leibniz 1978, vols. I –VII.

19 Eisenman 2004b, 235f.

20 Durand 2000.
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architectural language. Indeed, Durand anticipated important parts of the functionalism 

of the beginning of the 20th century, as well as Ernst Neufert’s Bauentwurfslehre. How-

ever, not all recipients were pleased with such practices. Gottfried Semper (1803 –1879) 

for example, as a representative of a tendency opposed to neoclassicism, criticized 

the schematism in Durand’s square grid, in which he feared the end of architecture. 

Durand operated in the spirit of 19th century scientism, in which earlier concepts of 

experience-based subjective judgment would be replaced by the modern concept of a 

universal science. Nevertheless, he was not the first to make use of such ideas. 

 

Already 50 years earlier the teaching of geometry had been introduced at the École du 

Génie de Mézières, which had given rise to the teaching of stonecutting based on drawing. 

This was characterized by a representation of stone constructions using parallel projection, 

and thereby represented an application of stereometry. The resulting trait, the term for 

the production of templates used in cutting the stones, could only be communicated with 

difficulty, however, and therefore was not able to establish itself as a symbolic language.21 

In the shift in training from general geometry to a drawing to be produced according to 

fixed rules, Alois Riedler was able to recognize the new possibilities of such a universal 

language for engineers and architects.22 Just as already in the 18th century the career of 

the engineer could establish itself with a focus on mathematics, and subsequently the 

further specialization of engineer and architect made the profession of master builder 

obsolete, drawing became the most important medium of communication for archi-

tect and engineer. Against this background, graph paper gave rise to a particular form 

of systematic training in drawing, which has another precursor in the techniques and 

instruments of surveying.23

This can be traced back as far as the Romans, who built their streets and cities on the 

basis of geometric grids. Starting from the division of the sky, which was then projected 

onto the ground as umbilicus or navel, the Romans determined the cardo and decumanus, 

the east –west and north–south axes, thereby forming four quadrants. These quadrants 

were then repeatedly divided until they assumed the dimensions of the floor of the 

Pantheon.24 Besides this form of an idealized division, the quadrants thus obtained also 

formed the economic units of their calculated administration.

The architectural historian Volker Hoffmann attributes the invention of a net composed 

of threads to the master builder Filippo Brunelleschi (1377 –1446), insofar as he is able 

to show that the latter measured the topography of ancient Rome with the help of 

21 Evans 1995, 179 – 238.

22 Riedler 1896.

23 Grelon 1994, 15 – 57.

24 Sennett 1994, 106 –108.
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squared paper.25 In this way, Brunelleschi affiliates himself in his methodology with the 

contemporary astronomer Paolo dal Pozzo Toscanelli (1397 –1482), who likewise made 

use of gridded paper to map constellations, and thereby called on the long tradition of 

employing grids in cartography since antiquity. In his Trattato di architettura the sculptor, 

master builder, and theorist Antonio Averlino (1400 –1469), known as Filarete, also points 

out the advantage of squared paper for the securing of true-to-scale representations.26

In the art of the Renaissance the grid was subsequently developed for the purpose of 

faithful depiction in the graphic arts. Even before Dürer’s (1471−1528) classic text, the 

architectural theorist Leon Battista Alberti as well as the painter and polymath Leonardo 

Da Vinci (1452 –1519) made analogous observations with regard to the velum.27 In 1528 

Albrecht Dürer finally used a velum as the lattice between the draftsman and his model in 

his woodcut Der Zeichner des liegenden Weibes. Under the influence of Euclid’s Elements, 

Dürer formulated in the Unterweysung der Messung his methods for a systematic training 

in geometry.28 

The Dynamization of Geometry 

While Alberti still strove to fix an object in its position in space by means of a velum, as 

was also suggested by René Descartes in his theory of the distinction between res extensa 

and res cogitans, in the modern physics of the 20th century at the latest there was a shift 

in the relation to space and time: time took primacy over the previously fixed metric 

order of the spatial context.29 An intermediary step in this direction was taken by Leibniz 

with his theory of monads, in which he opposed the mechanistic physics of Descartes, 

in order with the help of point-like centers of force to formulate a unity of non-material, 

metaphysical conditions. In this connection, Horst Bredekamp has described Leibniz 

as a “symbol maker par excellence.”30

If in their beginnings the factors of verifiability and measurability still served an emanci-

pation from the hegemony of theological and aristocratic forms of knowledge and power, 

then subsequently, as an attempt at universal topological as well as physiological forms 

of measurement, they represented a new formation of geometrization and disciplining.31 

Thus, the English philosopher and physician Robert Fludd (1574 –1637) – two generations 

25 Hoffmann 1992, 323f.

26 Spencer 1965, 315. 

27 Alberti 1435, 16f.

28 Dürer 1538.

29 Koyré 1990.

30 Bredekamp 2004.

31 Galilei 1610. Cf. also Zur Lippe 1974.



122 Sandra Schramke

after Leonardo da Vinci – at the beginning of the 17th century searched for modern forms 

of the measurability and representability of physiological coherences between the outer 

world and the inner human. Here, he moved between fully achieved painterly symbol 

and graphic technical sketch.32

American Pragmatism

The beginnings of a systematic recording of the world were not, however, related only to 

art and technology, but also to natural phenomena. Around 1900, with his atlases of art 

forms in nature, in which in the form of symmetries he presented the theory of evolution 

as a worldview, the zoologist and physician Ernst Haeckel (1834 –1919) paved the way 

for biologism.33 With the beginning of the 20th century, a new orientation took place with 

the mathematician and biologist D’Arcy Wentworth Thompson (1860 –1948). In his 

magnum opus On Growth and Form Thompson examines the influence of mathematics, 

physics, and mechanics on evolution against the background of thermodynamics.34 With 

his mechanistic explanatory models he assigned, on the basis of mechanics, causal 

explanatory models to evolutionary morphological changes in form, and thus developed 

further a Cartesian conception of the world. What concerned him were the ways in 

which thermodynamics could be transferred to matter, while the immaterial disappeared 

entirely from possible explanatory approaches. According to Thompson, changes in form 

comprised both the conception of Cartesian transformations and ideas of morphogenesis. 

The Transformation of Tensegrity Structures

These new models of transformation have been featured by architecture in different 

forms. Perhaps the most prominent was developed by the engineer and architect Richard 

Buckminster Fuller (1895 –1983) at Black Mountain College, founded in 1933 in North 

Carolina, USA, which made a name for itself through the program of an equal status of 

art and science in the service of social responsibility. The reform-pedagogical ideas of 

the philosopher John Dewey (1859 –1952), who at his institute at Black Mountain College 

focused on experience-based interdisciplinarity, contributed decisively to the formation 

of the school of functionalism. These ideas should be understood as a consequence of 

American pragmatism, which after the turn of the century viewed itself as a “Reform 

32 Fludd 1619.

33 Haeckel 1913. Cf. also Breidbach 1998.

34 Thompson 1917.
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Darwinism.”35 With the figures Dewey, William James, and George Herbert Mead, prag-

matism was able to enter into a union with functionalism.36

Buckminster Fuller operated in the spirit of an architectural conception mediating between 

pragmatism and functionalism that is typical especially of the American 20th century. 

With the example of the Blur pavilion by the American architects Elizabeth Diller and 

Ricardo Scofidio for the Swiss Expo 2002, it can be shown how the technical basis of the 

pavilion supports the idea of the fleetingness of the image of a cloud.

Here, the transformation of appearance enters into a union with engineering, which can 

be traced back to Buckminster Fuller’s form experiments. While the pavilion as walk-in 

cloud takes up traditional technical and allegorical theories of space, and stages them 

anew, its floor is made of a tensegrity construction made of steel tubing with flexible 

joints and 20,000 mist nozzles. The architects, who decided to work with the surrounding 

water, which was sprayed in the form of mist by means of a computer-controlled weather 

system, entirely abandoned the architectural categories of inside and outside. The idea 

of a skin is replaced by an atmospheric space of experience. The play with the two states 

of the fluid and the gaseous involved an outer and optically perceivable space of vision 

as well as an inner and atmospherically experienceable affective space. Interesting in this 

construction is the pavilion’s undulating floor, which as load-bearing system symbolizes 

the instability that all transformations of the figure contain in themselves. A tensegrity 

structure as a suspension system made of flexible tension rods formed the technical 

basis for the aesthetic appearance of this cloud. Its ingenious inner and outer balance 

in the tradition of American functionalism after Buckminster Fuller followed the logic of 

an optimized reduction of supporting elements. As lightweight load-bearing structure 

35 Goldman 1997.

36 Hutterer 1998, 181.

Fig. 3 Blur pavilion, tensegrity structure, computer model, Diller 

Scofidio + Renfro.
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it could be installed in an uncomplicated way and with a minimal use of materials. On 

a structural level, stable polyhedra acted as the basic elements for this load-bearing 

construction. 

Buckminster Fuller took as a starting point a dynamic balance of swaying and inter-

connected systems, and not a grounded structure. With regard to its dynamic balance 

of forces, this structure is closely related in a figurative sense, on the one hand, to the 

model of space-time in modern physics, which abandoned fixed physical quantities and 

translated them into vectors; on the other, to the aesthetic forms of natural orders such 

as snowflakes and crystals.37 The genealogy of tensegrity is worth at least sketching out. 

The term is a neologism composed of the terms tension and integrity. The first tensegrity 

structure was the wire-spoke wheel developed between 1871 and 1876 by James Starley 

(1830 –1881). Thus, when in 1913 Marcel Duchamp mounted a bicycle fork with its wheel on 

a stool, and presented the result as the first Readymade, he was simultaneously showing 

an object that was also worth looking at due to the balance of forces contained in it. 

The further development of this principle was carried out by Buckminster Fuller and his 

student, the artist Kenneth Snelson (b. 1927).38 Tensegrity structures are characterized 

by a load-bearing system held in balance by a series of elastically connected tension 

rods. This dynamic structure gives rise to a form that cannot be described with the idea 

of groundedness found in traditional architecture. This was demanded by the Roman 

architect Vitruvius in his De architectura from the 1st century B.C. as one of the defining 

categories on the basis of the Aristotelian conception of the solid Earth. Since then it 

has dominated the history of architecture in the form of a rectangle. As Ernst Cassir-

er has noted, this category, which is based on a fixed concept of space, underwent a 

transformation at the latest during the Renaissance period with the transition from an 

Aristotelian to a dynamic conception of the world. Immanuel Kant would then detach 

this relation from space and dynamize it in the direction of time.39 In the 20th century 

this change is exemplary of the change in the conception of the physical order brought 

about by Einstein’s theory of relativity, which describes the universe as a field consisting 

of a balance of forces.40 During the final years of World War II a number of researchers 

and engineers began to think over the basic structure of engineering in a model setting. 

On this basis, Buckminster Fuller became interested in a newly founded, universally valid 

engineering based on not two- but three-dimensional geometry, in which two lines do 

not intersect at a point as on paper, but form two linked elements in space with a specific 

relation of forces. He associated this practical geometry with a particular interpretation 

37 Fuller 1982.

38 Snelson 2015.

39 Kant 1786.

40 Cassirer 1956.
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of the transitions of the elements described by Plato in Timaeus, the so-called platonic 

solids.41 Among other things, Fuller reconstituted the Platonic solids. He began with a 

square whose sides were made of rigid struts, but whose corners were made of flexible 

rubber tubes. This led to astonishing results. Of its own accord the square does not 

keep its shape, but topples over like a slanting cube. The figure subsequently passes 

through various states of oscillation; the only stable form here is formed by an isosceles 

triangle. Hence, it was this rather than the square frame that Fuller designated as the 

basic element of his building structures.42

Through his interest in the geometries of Platonic solids and other original experiments, 

Buckminster Fuller was alerted to the physically effective structural laws of nature. He 

subsequently tested his results in empirical experiments on various load-bearing systems. 

The first of these experiments can be traced back to the early 1940s. However, it was 

only after World War II that they were given a memorable shape in the practical forms of 

geodesic cupola and dome, which would eventually make Buckminster Fuller famous.43 

His constructions were based on a flat and convex or concave space frame, the so-called 

octet procedure made up of alternating octahedron and tetrahedron cells.44 

With this transferal of scientifically-oriented model questions and the structure of atomic 

configurations onto load-bearing systems, Buckminster Fuller was turning in particular 

against the International Style. In his introduction to Five Architects, Colin Rowe describes 

the International Style as a reflection on form in the context of economic agendas es-

pecially in the USA.45 The outer sign of this official direction was a loss of the ideals of 

European architectural modernism. The related tendency of the reduction of architecture 

to its form is opposed by the so-called New York Five – to which besides Michael Graves, 

Charles Gwathmey, John Hejduk, and Richard Meier also Peter Eisenman belonged – with 

the help of a semiotics derived from linguistics. With the institutionalization of the subject 

of architectural theory and the application of semiotics to architecture in accordance 

with the linguistic turn diagnosed by Gustav Bergmann and Richard Rorty, the New York 

Five searched for new, more open interpretative models.46 

Unlike his colleagues, however, Fuller focused in his considerations less on explicit 

linguistic models than on calculation and empiricism by means of mathematics and 

41 Fuller 1975. See also Plato 2008, 53e, 54 a –c.

42 Snyder 1980, 115.

43 The inventor of the geodesic dome in lightweight construction is thought to be Walther Bauersfeld with 

his Zeiss Planetarium in Jena (1919 –1926). Unlike Buckminster Fuller, however, Bauersfeld did not have 

his dome patented.

44 Krausse 2002, 42.

45 Rowe 1975.

46 Rorty 1967.
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practical geometry. In his material-based transformation studies he discovered that the 

geometrical derivation of Platonic solids could be reduced, starting with a cuboctahedron 

via an icosahedron to an octahedron, and finally via the fold and inversion, to a triangle. 

This is the minimal, irreducible unit of every structurally relevant construction: “the 

triangle is a model in which each side stabilizes the opposite angle with a minimum of 

effort.”47 In space this corresponds to a tetrahedron. This principle thus replaces the 

traditional framework based on a square. As a so-called four-bar frame the latter was 

still used for example by the Stuttgart architect Frei Otto, who was likewise oriented to 

bionics. In 1972, as director of the Institut für freitragende Flächenbauwerke, Otto built 

the Olympic stadium in Munich with its spectacular roof.48

Buckminster Fuller thus categorically rejected the previous orientation to the square. 

With his triangles and by deploying projective geometry, he attempted to propose an 

alternative to the Cartesian coordinate system and to Euclidian space. With his focus 

on three-dimensional processes as opposed to planar geometry, Buckminster Fuller 

transferred the Greek idea of the close disposition of spatiotemporally bound forms – such 

as the ichnographia (plan), orthographia (elevation), and scenographia (perspective) – to 

a dynamically conceived system model. For this he used sketches in the form of vector 

plans, which did not, however, entail the disengagement from every kind of illusionism 

to the benefit of an idea of timelessness. Rather, Fuller drew on modern spatial concepts 

of physics, such as Erwin Schrödinger’s space-time structure and Albert Einstein’s search 

for a model for relativity theory.49 For this, Buckminster Fuller coined the term synergetics, 

which he used to launch the idea of an energetic geometry.50 From this he derived the 

idea of a structure model, with which as a side note he reformed crystallography.51 

Buckminster Fuller did not, however, limit himself to the engagement with projective 

geometry; he also placed this in relation to a visual as well as tactile space of experience.52 

His embrace of the structural laws of nature in connection with an actively participating 

subject in dance marks him out as a realist. In other words: the spiritual participation of 

external realities shifts to the center of Fuller’s aesthetic, which distinguishes him from 

47 Snyder 1980, 117.

48 Nerdinger 2005.

49 Einstein 1923.

50 Snyder 1980, 135.

51 Fuller could demonstrate that there is a five-fold symmetry, which had previously been strictly rejected by 

representatives of crystallography. “It was Fuller's Expo-Dome, which Kroto and Smalley had seen in 1967 

in Montreal, which posited them on the right track. Architecture as a catalyst of a scientific knowledge? 

Why not – especially when such a case of pattern recognition repeatedly occurred. The first catalysis of 

this type took place during 1959 – 62, as Donald Caspar and Aaron Klug [Nobel Prize in Chemistry, 1982] 

discussed with Fuller the structure of the viruscapsid.” In: Krausse 2000, 211 (trans. by S. S.).

52 Buckminster Fuller called his series of experiments with Platonic solids, which he staged with one model, 

“five ways to dance the Jitterbug.” Krausse 2002, 40 – 49, cf. also id. 1998, 293 – 294.
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a nominalist, who is concerned with mere orders of nature. Accordingly, his classes at 

Black Mountain College in North Carolina did not foreground fixed typologies, but taught 

according to the principle of how nature itself builds. Unfortunately, the question of which 

nature is being referred to here is not fully answered. As is known, the concept of nature 

does not arise from a reception, but is the result of an active construction.53 Buckminster 

Fuller’s concern therefore was to convey a method of acquiring an empirically based struc-

tural knowledge. The logic of this was not exhausted in the mimetic imitation of natural 

structures; it also lay in the anticipation of the ideal forms of a practical artist-engineer.54 

Renaissance of Pragmatism

If American functionalists in the first half of the 20th century focused on the idea of an 

evolutionary life process and an adaptation to the environment, which they tested out 

above all in experiments, then the protagonists of poststructuralism, Jacques Derrida 

and Gilles Deleuze among others, were concerned with a language-centered engagement 

with theory. This tendency, which arose out of linguistics, led to the establishment of the 

subjects of architectural history and theory at the ETH Zürich by Bernhard Hoesli in 1967 

as well as at the Institute for Architecture and Urban Studies founded at the same time by 

Peter Eisenman in New York.55 In this context, the launching of Eisenman’s publications 

Oppositions and Skyline also made an essential contribution to an autonomization of 

architecture via the detour of language.56 Subsequently, Eisenman developed the idea 

of architecture as an intertextual system, which in the 1980s he gradually expanded 

with concepts and methods derived from generative grammar after Chomsky, as well 

as from phenomenology and philosophy.57 In this way, Eisenman can be seen as a direct 

successor to the English architectural theorist Colin Rowe, who in the immediate postwar 

period formulated an architecture as a self-referential system of signs characterized by 

trans-temporalities and structural thought, which permitted cross-references between 

Andrea Palladio and Le Corbusier. In this connection, Eisenman became among other 

things a model for the artist-architect Gordon Matta-Clark, whose projects tested new 

formats both on paper and in space.58 

53 Haag 1973.

54 “I did not copy nature’s structural patterns. I did not make arbitrary arrangements for superficial reasons. 

What really interests me therefore in all these recent geodesic tensegrity findings in nature is that they ap-

parently confirm that I have found the coordinate mathematical system employed in nature’s structuring. I 

began to explore structure and develop it in pure mathematical principle out of which the patterns emerged 

in pure principle and developed themselves in pure principle. I then realized those developed structural 

principles as physical forms, and in due course applied them to practical tasks.” In: Fuller 1964, 59.

55 Frampton/Latour 1980, 5 – 41.

56 Eisenman 2004a, 227 – 231.

57 Eisenman 2005, 224.

58 Ursprung 2012, 38f.



128 Sandra Schramke

Architecture of the Event

In the 1990s Eisenman turned his attention to an architecture of the philosophy of the 

event. This is characterized by a relation between inside and outside, as described by 

Deleuze in the figure of the rhizome.59 Instead of fixed hierarchical attributions of positions 

in space and place, the rhizome takes up the tradition of Leibniz’s theodicy.60 In this 

context, with regard to the increase of complexities and manifolds as opposed to the 

essences in Plato, Joseph Vogl formulates the essential difference between Leibniz and 

Deleuze: “Rather than a question about the essence, we are presented with a polyphony 

of questions relating to the accident, to the manifold, and to the event.”61

If Buckminster Fuller’s tensegrity structures were still governed by the systematics of 

transformation on the basis of platonic solids, Eisenman follows in his transformations 

the logic of the philosophy of the event characterized by singularity. At the same time, 

with the shift from intertextuality to folding, one can discern a renaissance of pragmatism. 

However, unlike the pragmatists of the turn of the century who were concerned with 

biologistic models, Eisenman refers to a machine model, at whose basis, according to 

Horst Bredekamp, one can also discern the imitation of nature.62

It is not by chance therefore that Eisenman drew on mathematical models, especially 

those of René Thom, whose chaos theory deals with dynamic types. Here, Thom examined 

dynamic systems 63 with regard to their qualitative changes resulting from volatility.64 As 

with all mathematical problems, Thom was concerned with the abstract modeling of 

the real world. More precisely, he was engaged with the description of the border zones 

of fractals in chaos theory. Here, mathematical catastrophe is described as an abrupt 

change of state leading to folds: “In the three-dimensional diagram of such a nonlinear, 

discontinuous system one recognizes in the critical threshold of a sudden change of 

state a folding of the diagram, which is also described as a catastrophe.”65

In the mathematical model of chaos theory Thom distinguishes the forms cusp, swallow-

tail, butterfly, wigwam, elliptic umbilic, hyperbolic umbilic, parabolic umbilic, symbolic 

umbilic, and fold.66 

59 Deleuze/Guattari 1987, 4 – 25.

60 Leibniz 2013.

61 Vogl 2003.

62 Bredekamp 1995.

63 Thom 1975, chapters 4, 5. Cf. also Aubin 2004, 95 –130 and Aubin 2001, 255 – 279.

64 Zimmermann 1980, 385.

65 Werner 1996, 85.

66 Zimmermann 1980, 385 – 412.
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Fig. 4 Design for Haus Immendorff, Peter Eisenman.

As a source for his design for Haus Immendorff from 1993, Eisenman made use of Thom’s 

model of the soliton wave, which represents an example of physical self-organization 

characterized by nonlinearity. The function of linearity is replaced here by curves and 

refractions. In this relation, Thom mentions both the Mandelbrot set and the Koch 

snowflake. 



130 Sandra Schramke

“The fold as a technique in architecture can accomplish opposite 

qualities: it can represent a sudden change of direction, assumption, 

or mood […] Conversely it can resolve differences in a way which is 

distinct from the other architectural methods of dealing with plural-

ism, such as collage. This is by enfolding, by connecting that which is 

different in a smooth transition. Here suppleness and smoothness 

are important – the way, for instance, that two different liquids are 

enfolded into each other by stirring.”67

In these formalizations folding is thus attributed the function of dynamic changes that are 

not only of use for purposes of communication, but also become transferrable entirely in 

the spirit of the modern sciences.68 At this point it can also be surmised why Eisenman 

saw in chaos theory new possibilities for architecture.69 With the use of mathematical 

models he promised himself a way out of the cul-de-sac of postmodernism, which while 

stimulating architectural discourse, tended formally to be geared to the combination 

and repetition of form. Against repetition, mathematical models of singular phenomena 

promised new approaches to architecture. 

Forms of Representation

In modern mathematics once can distinguish among other things three different forms of 

representation, which Gert Höfner has characterized as follows:70 analytic representation 

– that is, representation through formulae – enables the precise calculation of function 

values at the expense of the possibility of visualization; graphic representation – that is, 

representation in the Cartesian coordinate system – which has the advantage of the possi-

bility of visualization, but the disadvantage of less exact values dependent on the increase 

of the area presented; finally, tabular representation or a table of values, which does not 

necessitate numerical calculation, but as a result need not display any values.71 The miss-

ing links between mathematical exactness and visualization articulated in these models 

therefore no longer allows a transfer of the mathematical model between abstract formulae 

and real representation. This can be traced back to the founder of analytic geometry, René 

Descartes who provided the basis for the calculation of geometrical problems by forfeiting 

67 Jencks 1995, 53f.

68 Eisenman 2007d.

69 Eisenman 2004b, 235f.

70 Höfner 2015.

71 Among other uses of models in modern mathematics, one should mention model theory, which was first 

developed in the 1930s, as well as physical models (made from card, string, plaster, and wood, etc.), which 

were abundant in Europe and in the USA, especially in the 19th century. Cf. Mehrtens 2004, 276 – 306.



 3D Code: Folding in the Architecture of Peter Eisenman 131

the possibility of visualization.72 Against this background, also the enforcement of the 

graphic representation of spatial structures can be designated as a model, which can also 

be described as a function diagram with three variables, and which function as orthonormal 

coordinate system. Complex dynamic systems are here designated as a folding of determining 

functions. Thus, differential geometry as a mathematical symbol system is able to replace 

the model of the Euclidean system. In this connection, the new spatial model of the rhizome 

also gains in importance, which takes the place of a centralized world model, and can be 

traced back to the beginnings of modern physics. At the beginning of the 20th century the 

mathematician Henri Poincaré explained the fundamental difference between what rests on 

measurement – that is, on the haptic – and projective Euclidean geometry.73 This distinction 

brought about new approaches to geometry for use in architectural representation. In the 

1980s the architectural theorist Robin Evans (1944 –1993) referred to Poincaré, and saw the 

possibility of considering active as opposed to passive geometries as fields of force in the 

interstices of conventional gestalt theories. Evans remarked that geometrical composition 

loses its significance when it is not considered as a tool of projection, which he qualified as 

projection, quasi projection, and pseudo projection. According to Evans, the tools of these 

projection types provided new possibilities, as now the fourth, that is, temporal, dimension 

could be included in the architectural representation. Significant in this context are the 

so-called fields of force of drawing, which provide the key for the handling of geometries. 

Within this theory the fold assumes a paradigmatic meaning of a vector-derived geometry 

that cannot be sufficiently grasped using the figure–ground relation of gestalt theory.74 In 

this logic, Eisenman demands for the representation of his folding architecture, beyond the 

typical architectural parallel projection of plan, elevation, and section, a topological model 

in which the index assumes the significance of the reference structure. Here, the index can 

indicate an unseen or virtual movement. Thus, Deleuze understands the index no longer 

as map with the reference to the grid, but as schema. 

Perceptual Space

The aspect of reference at the basis of the schema reveals a further approach to the fold, 

which according to Deleuze can “read into […] the soul.”75 

In turning away from the stylistic pluralism of postmodernism, Eisenman draws attention, 

besides the engagement with geometries of the fold, to an event, which in the Kantian sense 

lies “before the synthesis of perception.”76 In this way, perception becomes an elementary point 

72 Descartes 1637.

73 Poincaré 1921.

74 Eisenman 2005, 226.

75 Deleuze 1993, 3.

76 Vogl 2003.



132 Sandra Schramke

of reference in Eisenman’s architecture: “perception alone dislocates the knowing subject.” 77 

Here, Eisenman understands space not as a precondition of perception in the Kantian sense, 

but as an atmosphere linked to time. Because in the neopragmatism of postwar architecture 

the end of theory was evoked and a greater autonomy and engagement with everyday culture 

was expected of architecture, one rediscovered theories of perception stretching back to the 

18th century. Eisenman, alongside other theory-forming protagonists of architecture, can draw 

on the principles of gestalt theory and, with reference to an active geometry, demands its 

transgression in order to attain the category of a temporally determined atmospheric space:

“[F]olded space articulates a new relationship between vertical and 

horizontal, figure and ground, inside and out – all structures artic-

ulated by traditional vision. Unlike the space of classical vision, the 

idea of folded space denies framing in favor of a temporal modulation. 

The fold no longer privileges planimetric projection; instead there is 

a variable curvature. […] [F]olding […], in terms of traditional vision, 

[…] contains a quality of the unseen. Folding changes the traditional 

space of vision. That is, it can be considered to be effective; it functions, 

it shelters, it is meaningful, it frames, it is aesthetic. Folding also 

constitutes a move from effective to affective space.”78

Atmospheres

The inside–outside relation, which in Eisenman’s architecture replaces the concept of the grid 

with that of the frame, becomes further charged in the context of theories of the event. With 

affective space, Eisenman wants to bring a modern consciousness to his formal justification.79 

Eisenman makes explicit reference to the architect Claude Perrault (1613 –1688), who is 

considered Vitruvius’s most important translator into French, and in the theoretical dispute 

with François Blondel demanded a rejection of an aesthetics of nature in favor of temporal 

concepts of beauty. Eisenman follows this tradition by extending the network of references in 

the design process beyond scientific standardization and timeless aesthetics to include the 

instabilities of chaos theory as well as references to fiction and psychoanalysis. In this way, 

temporal conditions come to the fore, which are not grasped with the concept of type, but 

rather with that of the topos.80 With this approach Eisenman, drawing on phenomenology, 

also questions the duality of a subject–object relation as well as spatial preconditions in favor 

of experiences of the event. For Eisenman, this characterizes the modern consciousness.81

77 Eisenman 2007c, 41.

78 Eisenman 2005, 38.

79 Eisenman 2007a.

80 Eisenman 2004b, 236 – 237.

81 Schwarz 1995, 25.
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Projective Space

Beyond this, the new consciousness is treated by Eisenman as a genuine architectural 

problem of representation. With a focus on a polymorphic perception, he projects the new 

consciousness onto a new space of representation. Drawing on Erwin Panofsky,82 who 

in his theory treated perspective not as a mathematical but as a symbolic construction, 

Eisenman hoped from the fold for a new space of representation. Just as Evans questioned 

the cultural conventions of Durand’s drawing systematics and situated drawing not only 

in relation to its episteme between drawing and calculating, but also claimed play as a 

quantity beyond calculability, Eisenman wants to explore the expressive possibilities of 

the polymorphic perception of form:

“Whence the question: how can one return from this perception fash-

ioned by culture to the ‘brute’ or ‘wild’ perception? What does the 

informing consist in? By what act does one undo it (return to the 

phenomenal, to the ‘vertical’ world, to lived experience)?”83

In this way, Eisenman acts in analogy to the painters of the time of Alberti, the so-

called patron of projection – painters who missed in perspective the reflection of human 

perceptions and therefore categorically rejected the standards of drawing conventions, 

while in the architecture of the period the form of symmetry 84 and a correlation between 

architectural plan and built space prevailed.85 Hierarchically centered symmetries follow-

ing the logic of surveying in cartography have remained in use up to the present as a 

standard of architectural drawing. They refer back to Euclidean space, which is equated 

with the sense of touch. In the history of architectural theory, in contrast, the space of 

vision is associated with projective geometry. In the conflict between Euclidean and 

projective space Einstein defended Euclidean space by ascribing to it three subcategories: 

besides Euclidean, he also names Riemannian spherical and stereographic perspectival 

geometries. According to Evans, he thereby avoided the logic of duality by combining in 

his theory a field of anamorphic vision consisting of a balance of forces and a Euclidean 

metric. Within this theory he situated the sense of sight between geometry and visual-

ization, between sensations, motor activities, and concepts.86 In this way, perceptions 

and interpretations are raised to the highest principle, and the shaping of perception is 

opposed to a “petrified Platonism.” Evans, who in his engagement with architectural 

drawing analyzes the advance of ideas about images, can therefore link geometry via 

82 Panofsky 1991.

83 Maurice Merleau-Ponty quoted in Schwarz 1995, 11.

84 Philipp 2007, 147 –157.

85 Eisenman 2007d.

86 Evans 1995, 352.
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the representation of ideal forms in Greek geometry to the manipulation of ideal forms 

in the geometry of Descartes, and finally to modern models of knowledge.

Here projection becomes central for questions about constructions of the world, whose 

communication rests on the visualization of graphic representations of knowledge. 

Thus, with modern physics conventional assumptions about representation are ques-

tioned.87 Not representation but the affect placed before perception becomes the focus 

of the formalization of knowledge. If during the Renaissance a decisive role was played by 

relations of similarity in the framework of a creation theology, then Descartes translated 

these into that of a visualization strategy, although he was aware of the distinction between 

perception and information processing. Descartes differentiated between understanding 

and sensory perception.88 Knowledge about the interactions between conceptual and 

perceptual space highlights the significance of the formalization of the design process for 

consciousness and vice versa: “Imagination is not held within the mind, but is potentially 

active in all the areas of transition from persons to objects or pictures. It operates, in 

other words, in the same zones as projection and its metaphors.”89

Starting from a modern consciousness, which Eisenman refers to via the detour of 

philosophy, Euclidian space in the categories developed by Einstein seems only partly 

suitable for the construction of the fold. Irregular, singular displacements of the grid 

simultaneously lead to a topology, or put differently a correlation to the diagram, which 

through its interstices always also factors in the conceptual space of spatially ordered 

information. In the framework of semiotics, already Charles Sanders Peirce saw in the 

diagram the possibility of the visualization of thought in general guaranteed.90

The fold in Eisenman’s architecture thus moves between Euclidean and topological 

diagrammatic geometry on the one hand, and affective space on the other. It arises 

as a consequence of the pluralism of postmodernism and is initially a development 

of neopragmatism, to finally fulfill, with the concept of affect, architecture’s claim to 

autonomy and singularity. Hence, the fold is a form that on the basis of the grid arises 

through singular displacements, and is concerned not with combinations of forms as 

in postmodernism, but with experience-based multiperspectivity. In this way, the form 

of the fold brings scientific models to bear, without, however, relinquishing the space 

of singular perception that the event, which since Deleuze is unavoidably linked to the 

fold, first delivers.

87 Eisenman 1995, 582.

88 Descartes 1641, 21.

89 Evans 1995, 363.

90 Peirce 1983.
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Folding and Geometry: 

Buckminster Fuller’s Provocation 

of Thinking

1. Introduction

From the 19th century to the early 20th century, geometry had changed its character 

considerably. Discoveries, such as non-Euclidean geometry, alongside the development of 

differential geometry with its definition of the manifold, instigated a plurality of geometries. 

Encompassing this plurality was a trend of thought that called for situating geometry 

on stable foundations, one might say even static pre-determined ones. Against this 

backdrop of a growing move towards axiomatization, Richard Buckminster “Bucky” Fuller 

(1895 –1983), an American architect, designer and inventor, offered a critic of Euclidean 

and Cartesian geometry from a novel reconsideration of practical actions and operations 

like folding – folding, as a form of thinking on and through movement, enabling a different 

conception of geometry. This paper aims to show that beyond an axiomatized motionless 

geometry, on the one hand, and the various forgotten mathematizations of the fold, on 

the other, Fuller suggests to think of movement from a different perspective: movement 

as the provocation of thinking. It is what provokes and initiates thinking itself. Starting 

with Fuller’s critique of geometry and concluding with his conception of mobility, we 

examine notions of movement present in Fuller’s thought. Indeed, folds and folding lie 

at the core of Fuller’s work as an example of mastering movement. 
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2. Fuller and Geometry: Fuller’s critique and the conception of  
  geometry and folding at the beginning of the 20th century

Before turning to Fuller’s conceptions of the fold and mobility, as what provokes stable 

structures and buildings, we examine Fuller’s critique of the axiomatic conception of 

geometry, as exemplified in Euclidean axiomatics. We then review the manner in which 

geometry in general and folding in particular were perceived within mathematics, from 

the beginning of the 19th century till the middle of the 20th century, in order to assess 

correctly Fuller’s critique of the problematic relation between movement and geometry 

and his conception of folding.

2.1 Fuller and the Euclidean geometry

Needles to say, Euclid’s geometry – as presented in his book Elements – is one of the most 

influential theories of western civilization. However, little is known about the author, be-

yond the fact that he lived in Alexandria around 300 BCE. Most of the theorems appearing 

in the Elements were not discovered by Euclid himself, but were the work of earlier Greek 

mathematicians such as mathematicians of the Pythagorean School, Hippocrates of Chios, 

Theaetetus of Athens and Eudoxus of Cnidos. Credited to Euclid is the arrangement of 

these theorems in a logical manner, in order to show that they necessarily follow from 

basic definitions, postulates and axioms.1 The geometrical constructions employed in 

the Elements are restricted to those achieved by using a straightedge and a compass. 

Empirical proofs using measurement were not allowed: i.e., the only statements that 

were allowed were these in form of declaring that magnitudes are either equal, or that 

one is greater than the other.

 

Euclid’s rigor and organization was admired throughout the ages and considered as one 

of the main methods of proper mathematical investigation. What constitutes rigor has 

changed over the years: modern mathematics returned to Euclidean geometry, revealing 

missing axioms and finding gaps in proofs, while trying at the same time to reaffirm its 

consistency together with the consistency of the 19th century analytic geometry. Never-

theless, the basic tools and methods of Euclidean geometry persisted throughout the 

centuries: an infinite line, a circle and a scribe – a system of basic signs and propositions 

– from which every other true proposition can be derived. 

It is at this point that Fuller attacks Euclid’s geometry, by criticizing its tools: “Euclid 

limited himself in his theorems to construction and proof by the use of three tools – 

1 Cf. Heath 1921, 319; Proclus 1992, 53.
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straightedge, dividers, and scribe. He, however, employed a fourth tool without accrediting 

it – this was the surface upon which he inscribed his diagrammatic constructions.”2 

In his paper from January 1944, Fuller presents his position, in which he sets the ground-

work for his “energetic geometry” that would later become “synergetics.” Fuller follows 

up his critique, of the lack of use of a tool that was completely forgotten, by giving a 

historical explanation: 

“It must be remembered that Euclid argued his geometric cases at 

a time in history when the spherical concept of the universe, which 

some assert was known to ancient Greek philosophers, had if so, 

been lost again. At that time, the savants were subscribing to a flat 

or planar earth concept. Therefore, it is not surprising that his use 

of that flat plane as a surface upon which to work went as axiomatic. 

Logical to the misconception was the beginning of his proofs in the 

special abstract realm of an imaginary plane geometry.”

Fuller’s critique is in effect a contrarian stance against Euclid, whom he accuses of being 

the one who “had come in by the wrong entrance” and hence had insufficiently reflected 

upon his own tools. This has led, according to Fuller, to an illusory elementarism in the 

sciences: it not only reduced geometry into a sequence of logical steps, from which one 

could eventually draw a conclusion, but at the same time expelled from geometry the 

pivotal concept of movement,3 at best reducing it to a secondary concept derived from 

more fundamental objects, which could be removed at any point from the geometrical 

structure of which it stems. Euclidean geometry, according to Fuller’s conception, is 

static; the concept of movement is invoked through axioms, a step that can be avoided 

and is in fact redundant. Fuller says so explicitly, when he remarks:

“We find experimentally that two lines cannot go through the same 

point at the same time. One can cross over or be superimposed upon 

2 This citatation and the following two are taken from a 1944 paper by Fuller: Dymaxion comprehensive 

system, introducing energetic geometry. In: Krausse/Lichtenstein 2001, 160 –168, here: 164.

3 The history of the mathematical geometrical use of the notions of motion and movement (for example, 

whether they should be used as tools in mathematical proofs, how they should be conceptualized, what 

kind of entities – curves, surfaces – do moving objects create) starts already in antiquity; it is intricate 

and subtle. Aristotle condemned the use of motion in Geometry, stating “[t]he objects of mathematics 

are without motion” (Aristotle 1928 –1952, vol. 8, 989b), whereas Euclid does use the concept of motion 

in some of his definitions (Book XI of Euclid’s Elements, definitions 14,18 and 21. See Heath 1908b, 

261 – 262). For overviews concerning motion, space and geometry, see e.g. Rosenfeld 1988, esp. chapter 3 

and De Risi 2015. As we merely aim to point at the mathematical background against which Fuller 

developed his own thought, we by no means attempt to give even a partial account of it, as it would take 

us outside the scope of this paper.
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another. Both Euclidian and non-Euclidian geometries misassume that 

a plurality of lines can go through the same point at the same time. 

But we find experimentally that two or more lines cannot physically 

go through the same point at the same time.”4

All known geometries presuppose the totality of all lines already exists, since only then can 

two lines pass through a single point at the same time. Fuller makes the claim geometry 

does not take into account the dimension of time, and therefore may also not take into 

account time-consuming movement required in order to draw a line.5 The movement, 

which acts as the dynamic aspect of the structure, is in effect what keeps a built structure 

stable, as we will see in Section 3.1 in connection with Semper. According to Fuller, this 

is not apparent as long as one restricts oneself to plane geometry:

“[…] the Greek geometers were first preoccupied with only plane geom-

etry. They were also either ignorant of – or deliberately overlooked – the 

systematically associative minimal complex of inter-self-stabilizing forces 

(vectors) operative in structuring any system (let alone our planet) 

and of the corresponding cosmic forces (vectors) acting locally upon 

a structural system. These forces must be locally coped with to insure 

the local system’s structural integrity […]”6

It is clear Fuller’s critique did not merely target Euclidean geometry as embedded in its 

context of origin. It was rather aimed at its revival during the late 19th century. It is here 

that we should take a step back in order to understand the mathematical landscape that 

served background to his critique. What was the conception of geometry during the 

end of the 19th century to the beginning of the 20th century? How were the concepts of 

motion and movement reshaped?

2.2  The structural understanding of geometry at the beginning of the 20th century

In this section we will briefly review the conception of geometry from the end of the 19th 

century until the middle of the 20th century, focusing on Felix Klein’s Erlangen program and 

David Hilbert’s Grundlagen der Geometrie, and finishing with Alfred Tarski’s axiomatization 

of geometry. We wish to highlight that Fuller’s critique did not solely take aim at Euclid’s 

Elements; it was particularly interested in the revival of interest in axiomatic methods. 

At the end of the 19th century the interest in the foundations of geometry was growing 

4 Fuller 1975a, section 517.03.

5 Hence, there is only a partial overlapping of events. See Section 3.2.

6 Ibid, section 986.042.
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both from a group-theoretic viewpoint and an axiomatic viewpoint. The emergence of 

non-Euclidean geometry at the beginning of the 19th century (Bolyai’s and Lobachevsky’s 

treatises), the mathematization of space via Riemannian manifolds and the mathematical 

definition of curvature prompted major philosophical questions regarding the nature 

of space and its epistemology.7 The emergence of non-intuitive geometries gave rise 

to a need to discover the relations between the axioms of geometry and experience. In 

order to give a proper albeit incomplete historical account of this period, we begin with a 

recourse to group theory, which was one of the main topics of mathematical investigation 

during the 19th century, and which served as one important source for the development 

of a conception of geometry of that time.

A group, denoted by the letter ‘G’, is set of elements equipped with a binary action, denoted 

by ‘*’, which fulfills certain requirements. An obvious example for a group is the set of 

whole numbers together with addition as its binary action. The requirements the action 

should fulfill are considered to be the most elementary, when we think about actions such 

as addition or multiplication. To be more specific, there are four requirements: closure 

(if the elements a,b belong to G, denoted as a,b ∈G, then a*b belongs to G, denoted as 

a*b ∈G), associativity (if a,b,c ∈G, then a*(b*c) = (a*b)*c), unit element (there exists 

an element e ∈G s.t. e*g = g*e = g for every element g ∈G) and inverse element (for every 

g ∈G there exists an h∈G such that g*h = h*g = e).8

The study of group theory and its applications is usually considered to originate from 

the work of Évariste Galois (1811 –1832), who was working on the necessary conditions 

for solving an algebraic equation using the four known arithmetical operations (addition, 

subtraction, multiplication and division) together with roots of any order. What interested 

Galois around 1830 was not the equations themselves or their solutions, nor was he 

interested in the type of algebraic relations the roots hold among themselves. He was 

interested instead in the set of permutations of the roots themselves that preserve their 

algebraic relations.9 In other words, Galois’s discoveries prompted a process by which 

numbers were no longer considered fundamental to algebra. More crucial was a grasp 

of the algebraic-structural setting for which numbers assembled into various sets serve 

only an example and considered as a derivative of this structure.

7 For an extensive survey on the changing face of geometry during the 19th century see Gray 2006.

8 This definition can be found in all textbooks on group theory. See e.g. Rotman 1999, 12.

9 For example, for the equation x4 –5 x2+ 6 = 0, the solutions are A = √2, B = –√2, C = √3, D = –√3 and one 

of their mutual relations is: AB+CD = –5. Not every permutation of the roots A, B, C and D will preserve 

this relation. For example, if the permutation, denoted by f, is A → B, B → C, C → D, D → A then  

f(A)f(B)+f(C)f(D) = BC + DA = –2√6 ≠ –5. More surprisingly, out of the set of 24 possible permutations 

of 4 elements, only 4 permutations preserve the above relation.
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The concept of a permutation group was derived from developments in the theory of 

algebraic equations and from what became known as Galois theory. This historical 

strand is just one of the roots of group theory. Indeed, Klein’s Erlangen program makes 

it clear the development of the concept of the abstract group had another historical 

root, namely, geometry. Felix Klein (1849 –1925) was a German mathematician and 

mathematics educator, known for his work in group theory and non-Euclidean geometry, 

and for his work on the connections between geometry and group theory that spurred 

his Erlangen program.10

Klein’s program incorporated the idea that to every geometrical entity one can associate 

an underlying group of symmetries. By symmetry we mean a one-to-one transformation 

of the space onto itself that preserves certain properties of the space in question. The 

notion of a group is essential here: its set of elements was the set of symmetries, and 

the binary action was composition, as in the composition of functions. If S is our space 

(e.g. S is the three-dimensional Euclidean space), and f is a symmetry transformation 

of S (e.g. f acts by rotation with respect to an axis) then there are distinct subsets of S, 

which are not transformed by f (e.g. the axis of rotation). From this standpoint, Klein 

stated the task of geometry as follows:

“Given a manifold and a group of transformations of the manifold, 

to study the manifold configurations with respect to those features, 

which are not altered by the transformations of the group.”11 

The mathematical hierarchy of geometries is thus represented as a hierarchy of these 

groups, and the hierarchy of their invariants. For example, lengths, angles and areas 

are preserved with respect to the Euclidean group of two-dimensional symmetries, 

while only incidence and cross-ratio are preserved under the more general group of 

two-dimensional projective transformations. One might be under the impression that, in 

opposition to Fuller’s conception of the Euclidean Elements, Klein’s Erlangen program 

does indeed deal with movements and transformations (such as rotation, translation 

and reflection). However, let us consider the following citation from Klein’s: “We peel off 

the mathematically inessential physical image and see in space only an extended manifold; 

[…] transformations of manifold […] also form groups”.12 Together with peeling off the 

“inessential physical image”, one obtains a removal of any physical movement at the 

foundation of geometry. In this respect, Fuller might have regarded Klein’s program as a 

10 Klein 1872.

11 Klein 1893, 67.

12 Ibid.
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descendant of the axiomatic method: group theory deals with movement as an abstract 

movement that can and should be formalized and axiomatized; a static structure, that is.13 

One consequence of Klein’s program was that it enabled the acceptance of Hilbert’s 

axiomatic-structural approach to geometry. Indeed, as Wussing states “the transition 

to the notion of an abstract group was a partial cause, as well as a partial effect, for the 

growing acceptance of the ‘axiomatic method’ in Hilbert’s sense of the term.”14

Recognized as one of the most influential mathematicians of the late 19th and early 20th 

centuries, David Hilbert (1863 –1943) was a German mathematician, who advanced 

research on the axiomatization of geometry, culminating in one of his most influential 

works: Grundlagen der Geometrie. It should be noted that Hilbert was not the first to 

suggest geometry should return to its axiomatic origins. Moritz Pasch, Mario Pieri and 

Hermann Wiener,15 among others, also dealt with the subject at that time. However, 

Hilbert’s approach was decisive for the way geometry was conceived in the early 20th 

century. Hilbert conceived of geometry as a natural science, one in which intuition 

plays a crucial role, though its experimental foundations may be regarded somewhat 

retroactively.16 Hilbert states in his lectures on mechanics: 

“Geometry is an experimental science […]. But its experimental founda-

tions are so irrefutably and so generally acknowledged, they have been 

confirmed to such a degree, that no further proof of them is deemed 

necessary. Moreover, all that is needed is to derive these foundations 

from a minimal set of independent axioms and thus to construct the 

whole edifice of geometry by purely logical means.”17 

Once a minimal set of independent axioms is put together, geometry is studied through 

logical means: 

“Geometry […] requires for its logical development only a small number 

of simple, fundamental principles. […] [T]he choice of the axioms and 

the investigation of their relations to one another is […] tantamount to 

the logical analysis of our intuition of space. The following investigation 

13 See Wussing 1984, Part III.2 for an extensive analysis of Klein’s program, and 194 –196 for a description 

of mechanical movements in terms of group-theoretic concepts. It should be noted that Klein was also 

an ardent supporter of the use of models in mathematical teaching and research especially in the field of 

geometry. See for example: Mehrtens 2004; Sattelmacher 2013; Rowe 2013.

14 Wussing 1984, 251.

15 Pasch 1882; Wiener 1892; Pieri 1898.

16 See Corry 2004, chapter 3. 

17 Ibid, 162. See also Corry 1997.
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is a new attempt to choose for geometry a simple and complete set 

of independent axioms […]”18 

Hilbert’s views on geometry in particular and mathematics in general therefore did not 

regard mathematics as an empty formal game;19 they rather emphasized independence 

and consistency of an axiomatic system derived from intuition and experience. That view 

was promoted in Grundlagen der Geometrie, where Hilbert’s objective was to identify 

and fill ‘gaps’ or remove ‘extraneous hypotheses’ in Euclid’s reasoning. The manuscript 

laid out a clear and precise set of axioms for Euclidean geometry, and demonstrated 

in detail the relations of those axioms to one another and to some of the fundamental 

theorems of geometry.

In Grundlagen der Geometrie Hilbert considers three collections of basic objects, which he 

calls ‘points’, ‘straight lines’ and ‘planes’, and five relations between them. The conditions 

prescribed in Hilbert’s system of axioms are sufficient to characterize the basic objects 

and their relation to each other. In order to prove axiomatic independence, Hilbert builds 

several different geometries by negating some axioms while keeping others intact. Albeit 

possibly counter-intuitive, the resulting geometries are consistent. Geometry’s innate 

structure is maintained as a consistent one, unrelated to physical reality, to which it does 

not correspond. This can be seen in Hilbert’s words:

“We think of these points, straight lines, and planes as having certain 

mutual relations, which we indicate by means of such words as ‘are 

situated,’ ‘between,’ ‘parallel,’ ‘congruent,’ ‘continuous,’ etc.”20

What points, lines and planes have are their relations to each other. An object ‘point’ 

does not necessarily refer to a point in the physical sense: the only necessary and suf-

ficient condition for it to be such is that it satisfies the relations between what is called 

‘point’, ‘line’ and ‘plane’. It divorces geometry from any recourse to a specific instinctive 

meaning (or notions such as movement or motion). This was apparent already in 1893, 

when Hilbert, upon his return from Halle after hearing Wiener’s lecture, famously said: 

“One should always be able to say, instead of ‘points, lines, and planes’, ‘tables, chairs, 

and beer mugs’”.21 

The understanding that geometry is not about describing a space, but rather about 

conceiving it as what is grounded in a system of axioms, gave rise to a plurality of different 

18 Hilbert 1899, 1.

19 See Corry 2004, 161.

20 Ibid, 2.

21 Blumenthal 1935, 402 – 3.
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geometries. It opened the way to view geometry (and algebra) first and foremost as an 

internal structure, one that is not based on movement, measuring or counting. This 

is manifest in the shift from Hilbert to Tarski. Hilbert, having advanced mathematical 

formalism considerably, still regarded geometry as fundamentally empirical, though 

experimentation in itself need not be performed.22 Tarski, on the other hand, considered 

geometry wholly in its structural interiority. Alfred Tarski (1901 –1983) was a Polish logi-

cian, mathematician and philosopher considered as one of the greatest logicians of the 

20th century. He proved in 1930 that geometry, once formulated according to a specific 

choice of notations and axioms, admits an elimination of quantifiers: every formula is 

equivalent to a Boolean combination of basic formulae, that is, geometrical propositions 

can be written using first order logic alone. Once setting up the basic objects, relations 

and axioms, every claim of Euclidean geometry can be formulated using the quantifiers 

∃ (‘there is’) and ∀ (‘for every’) together with its basic objects serving as variables.23 

While Hilbert is considered one of the influencing mathematicians to reformulate to 

Euclid’s axiomatic geometry, it is Tarski who found a more economic and efficient axi-

omatization for it.24 Tarski’s system of axioms for Euclidean geometry was based on a 

single primitive element – ‘point’ – and two undefined relations among those elements 

– betweenness and equidistance (or congruence). For every three points a, b and c, the 

relation ‘betweenness’ takes the value ‘true’ if the point b lies on the line segment with 

ends a and c. For two pairs of points – thinking of each pair as the endpoints of a line 

segment – the relation ‘equidistance’ holds if the two segments are of equal length. All 

other relations are consequently derived; for example, the collinearity of three points 

is defined in terms of betweenness (a, b and c are collinear if and only if one of them is 

between the other two). Tarski did not take ‘line’ or ‘incidence’ to be primitive notions; 

indeed, the only primitive notion is the point. 

The primary significance of Tarski’s elementary geometry lies in its satisfying three 

essential meta-mathematical properties: it is deductively complete (every assertion is 

either provable or refutable), decidable (there is a procedure for determining whether or 

not any given assertion is provable), and it is consistent (and this is why it is a correct 

axiomatization).25 In order to prove these three, Tarski, in a move similar to Hilbert’s, 

based geometry on the real numbers. To prove the completeness of the systems of 

complex algebra and Euclidean geometry, Tarski proved the completeness of the system 

22 Concerning Hilbert’s contribution to the rise of modern algebra and modern geometry, see for example: 

Corry 2004, chapter 3; Mancosu 1998, Part III; Hasse 1932.

23 Here is an example of one claim of Euclidean geometry: for any triangle, the sum of the lengths of any 

two sides must be greater than or equal to the length of the remaining side.

24 By “more efficient” we mean that Tarski proved with this axiomatization that the euclidean geometry is 

consistent. For an extensive survey on Tarski’s life and work, see Feferman/Feferman Burdman 2004.

25 See Tarski 1967.
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of algebra based on real numbers – one that Hilbert assumed as evident and therefore did 

not bother to prove.26 Not only that, Tarski noted: “it is possible to construct a machine 

which would provide the solution of every problem in elementary algebra and geometry”.27 

This mechanical description of geometry is expressed in Tarski’s formulation: all axioms 

and propositions are expressed in terms of first order logic. For example, the famous 

parallel axiom can be expressed as follows:28

[B(abf ) ⋀ ab ≡ bf ⋀ B(ade) ⋀  ad ≡ de ⋀ B(bdc) ⋀ bd ≡ dc] → bc ≡ fe

where the variables are points and B(–,–,–) designates betweenness. This is a description 

that does not resemble Euclid’s in any form: “If a line segment intersects two straight 

lines forming two interior angles on the same side that sum to less than two right angles, 

then the two lines, if extended indefinitely, meet on that side on which the angles sum 

to less than two right angles.”29

In Tarski’s framework one does not need several basic objects. Such plurality might induce 

problematic relations between these objects, or a tacit form of abuse of notation might 

take place, as seen in Hilbert’s Grundlagen der Geometrie.30 A single object is all that is 

called for – an abstract object without presupposed properties, bearing no particular 

relation to empirical reality or intuition.31 Its properties are exclusively derived from 

a system of axioms: the point in Tarski’s work is an object defined according to what 

satisfies the axioms.

What is then the essence of geometry in its various faces from Klein to Tarski? It is clear 

Fuller’s critique bears merit, though not entirely well grounded from a historical stand-

point. From Fuller’s perspective, motion and movement were formulized so that they 

became pure mathematical objects, a maneuver that leads to a reduction of dynamics 

into axiomatics, that is, a static structure. Hilbert’s views on geometry encouraged a 

consolidation of it as what does not have an essential connection to movement (as a line 

can also be named a chair). Fulfilling Hilbert’s program for an axiomatically consistent 

geometry, Tarski had come to speak of geometry in mechanical terms. Tarski no longer 

refers to geometry as the study of space (together with constructions in and through it); 

he rather refers to its meta-properties as a static structure. Following Fuller, one may 

26 See Hilbert 1899, section 9.

27 Tarski 1967, 306.

28 Tarski/Givant 1999, 184, axiom 103.

29 Heath 1908a, 155.

30 Note that in Grundlagen der Geometrie a line is a collection of points but also functions as a basic object.

31 Cf. Hilbert’s reference to Kant’s citation regarding the origin of abstract ideas from intuition (Hilbert 1899, 1).
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say the Greeks’ static constructs (e.g. the square or the cube) were replaced by a static 

structure for geometry itself.

2.3 The two sides of the mathematization of the fold at the 19th century

In light of a static conception of geometry, we ask how folding, as a dynamic operation, 

was perceived mathematically starting from the 19th century. Before turning to Fuller’s 

conception of the fold, we will shortly examine the dual role folding played in mathematics 

at that time. This will help us situate Fuller’s thought within a pertinent historical tradition. 

A folded piece (of paper, fabric etc.) is regarded as such when one or two of the following 

operations are involved: creasing (as in folding a paper by a mountain- or valley-fold) or 

bending (without introducing creases). In this section we provide two examples of 19th 

century mathematizations of folding that took both operations into account: Sundara 

Row in his 1893 manuscript Geometrical exercises in paper folding, and Leonhard Euler, 

who described developable surfaces as folded. These mathematizations considered 

folding not only as a mathematical tool, but also as what expresses essential characters 

of the geometric form.

2.3.1 Row’s Folds and the emergence of the physical straight line

Tandalam Sundara Row was an Indian mathematician, who worked for the Indian gov-

ernment in the revenue department. Row is mainly known for his book Geometrical 

exercises in paper folding.32 Klein’s favorable mention of Row’s work in Vorlesungen über 

ausgewählte Fragen der Elementargeometrie sparked a general interest in the geometry 

of paper folding.33 Why was Klein so impressed by Row’s work on folding? To answer 

this question, let us examine how Row deals with geometry. To begin with, Row refers 

to the folding of paper as “kindergarten gifts” (the word ‘Origami’ does not feature). He 

invokes Friedrich Fröbel’s gifts and occupations: “[t]he idea of this book was suggested 

to me by Kindergarten Gift No. VIII. Paper-folding”.34 Row states that “[t]hese exercises 

do not require mathematical instruments,” referring to the straightedge and compass 

used in Euclidean geometry.35 Row also dispenses with the need for axioms:

“The teaching of plane geometry in schools can be made very inter-

esting by the free use of the kindergarten gifts …. [the paper folding] 

32 Cf. Friedman 2016 for a detailed account of Row’s life and work.

33 Klein 1897, 42: “[…] we may mention a new and very simple method of effecting certain constructions, 

paper folding. […] Sundara Row, of Madras, published a little book Geometrical Exercises in Paper 

Folding […] , in which the same idea is considerably developed.”

34 Row 1893, vii.

35 Ibid.
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would give them [school children] neat and accurate figures, and 

impress the truth of the propositions forcibly on their minds. It would 

not be necessary to take any statement on trust.”36 

Row suggests teaching Euclidean geometry to children could be done without axioms, 

that is, without “statement[s] [taken] on trust.” In comparison to Euclid, Row proposes 

a different conception of geometry: a geometry not grounded in axioms or ideal objects, 

but rather based on folding as its one and only allowable operation. As a result, the 

status of the straight line, as a product and producer at the same time, becomes clearer.

The opening chapter to Row’s manuscript starts with a description of materiality, not 

with any foundational system of axioms:

“Look at the irregularly shaped piece of paper […] and at this page which 

is rectangular. Let us try and shape the former paper like the latter. 

Place the irregularly shaped piece of paper upon the table, and fold 

it flat upon itself. Let X’X be the crease thus formed. It is straight.”37 

Row starts with an operation based on paper and hence on materiality: the folding of 

an  “irregularly shaped” sheet of paper and later the passing of a knife.38 The important 

point to consider here is that the line produced is straight as a direct result of folding.39 

There is no need to prove the line is straight, or define it as what passes through two points.

As the line X’X is only considered a consequence of folding, it obtains another status: it is 

that along which we fold: “Fold the paper again as before along BY, so that the edge X’X 

is doubled upon itself.”40 Row now folds the paper along the line that was just created, 

such that a part of this line X’X will be folded upon itself. When considering the crease 

BY that is created, Row discovers that BY and X’X are perpendicular.41 Creating thus a 

rectangle, Row continues with the folding of a square whose side is of unit length. Then 

a smaller square is folded inside, rotated by 45 degrees in relation to the initial square. 

The process continues repetitively, creating via folding a sequence of squares embedded 

one into the other. 

In Row’s treatment, the straight physical line acquires a special status: it is at once 

created by the fold and creating it. It is crucial to emphasize Row always deals with line 

36 Ibid, viii.

37 Ibid, 1 (our italics).

38 Ibid.

39 In contrast to Kempe’s 1887 treatment of straight lines (Kempe 1887, 2 – 3).

40 Row 1893, 1.

41 “Unfolding the paper, we see that the crease BY is at right angles to the edge X’X.” (ibid).
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segments – the inevitable result of folding a piece of paper of finite dimensions. There are 

neither infinite lines (and hence no dispute over the parallel axiom), nor basic objects to 

begin with. There is rather a basic operation that initiates geometry. The basic objects, 

the Grundbegriffe and the relations between them do not play the same crucial role in 

Row’s book, as they did for many of his contemporaries. Row takes into account neither 

group theory nor axiomatic methods he was surely well aware of.42 In Row’s work it is 

the fold – as what causes the discrete, finite, straight line to emerge as a material, discrete 

unit – that plays the crucial role. 

2.3.2 Euler, folded surfaces and differential geometry

Let us now turn to developable surfaces: in this context the fold is considered a continuous 

operation. The history of developable surfaces can be traced as far back as Aristotle 

(384 –322 B.C.).43 In their current definition, developable surfaces are regarded as a special 

type of ruled surfaces: they have zero Gaussian curvature and can be mapped onto the 

plane without distorting curves. 44 Though the history of developable surfaces deserves a 

detailed account, we will only provide a brief survey focusing on their relation to folding.45 

In his development of calculus, Leonhard Euler (1707 –1783) initiated the first serious 

mathematical study of ruled surfaces. He wrote his celebrated manuscript About solids, 

the surfaces of which can be developed on the plane – in the original: De solidis quorum 

superficiem in planum explicare licet – where he identified surfaces as boundaries of 

solids. Euler opened the manuscript with the statement that cylinders and cones have 

the property that they can be flattened out or “developed on the plane” unlike spheres. 

Euler wished to know which other surfaces share this property.46 

It is important to note for the purpose of our discussion that explicare in Latin means ‘to 

explain’, ‘to develop’ but also ‘to unfold’. The expression “in planum explicare,” which 

features all throughout the paper,47 can be translated verbatim into ‘to unfold onto a 

plane’. The term ‘developable surfaces’ is a later nomenclature. 

Euler failed to find developable surfaces (besides cylinders and cones) through analyt-

ical means. Using geometric principles, however, he did reach a solution. Employing 

geometrical results, Euler understands that lines that were parallel on the flat paper will 

also not meet on the folded one, concluding that the line element of the surface has 

42 Row’s awareness of other mathematical methods can be seen in Row 1906. Note the same year (1893) 

another manuscript on folding was published by the mathematician Hermann Wiener. See: Friedman 2016.

43 Aristotle states in De Anima that “a line by its motion produces a surface” (Aristotle 1928 –1952, vol. 3, 409a).

44 Gaussian curvature is defined as the product of the two principal curvatures, which are the eigenvalues 

of the second fundamental form of the surface in question (the second fundamental form being a 

quadratic form defined on the tangent plane to a point on the surface). See e.g. Pressely 2001, 147.

45 For more detailed surveys see: Cajori 1929; Reich 2007; Lawrence 2011.

46 In Euler’s words, “quorum superficiem itidem in planum explicare licet.” In: Euler 1772, 3.

47 Ibid, 7, 8, 11, 27, 31 and 34.
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to be the same as the line element of the plane. What is surprising perhaps is that the 

geometric principles in question were inspired by folded paper: “charta plicae”.48 It was 

folded paper and not solids, which informed the intuition behind developable surfaces 

in their early incarnation.49

Euler was not the only one to employ such terminology: the mathematician Gaspard 

Monge (1746 –1818) also studied developable surfaces at the time, and, as with the former, 

described developable surface (and curves on them) as pliée, i.e., ‘folded’.50 It might be 

claimed that mathematicians (e.g. Monge, Euler) considered folding during those decades 

an essential action for creating surfaces, as an operation grounded in the materiality 

of the paper. However, it is important to remark that, with the further development of 

calculus and the rise of differential geometry, the term Manifold (Mannigfaltigkeit), albeit 

having an etymological connection to ‘fold’, was not chosen to describe surfaces as 

inherently folded. In his 1854 talk Über die Hypothesen, welche der Geometrie zu Grunde 

liegen,51 Bernhard Riemann used the term Mannigfaltigkeit almost synonymously with 

‘magnitude’, when he stated he set himself “the task of constructing the notion of a 

multiply extended magnitude,”52 and invoked various motivations when first using the 

term. ‘Mannigfaltigkeit’ for Riemann can equally be discrete; it does not necessarily refer 

to a surface. When talking about continuous manifolds, the intuitions Riemann provides 

for choosing the term “Mannigfaltigkeit” are positions of objects and colors. No wonder 

a developable surface was and is considered a manifold and not a folded piece of paper.

3. Fuller’s mobile structures

As was seen in sections 2.2 and 2.3, a withdrawal from materiality occurred in geometry 

at the end of the 19th century: consider for example Tarski’s obvious mechanization 

of geometry. Row’s manuscript on the other hand was either completely ignored or 

criticized for being “too infantile for a grown person.”53 Against this background, Fuller 

suggested that stable geometry (in the form of planes and lines) emerges in fact from 

mobile moving folds, threads and transformations.

48 Ibid, 7.

49 Euler was of course also one of the founding fathers of topology, along Henri Poincaré , Solomon Lefschetz 

and Johann Listing. Fuller was interested in topological transformations (e.g. the Jitterbug transformation, 

see section 3.5) and was aware of Euler’s polyhedron formula: V – E + F = 2 (see section 3.4).

50 For example in: Mémoire sur les développées, les rayons de courbure, et les différens genres d'inflexions des 

courbes a double courbure (Monge 1785, 517 – 519); Application de l'analyse a la géométrie, a l'usage de 

l'Ecole impériale polytechnique (Monge 1809, 348 among others), Géographie descriptive (Monge 1811, 141).

51 Riemann 1868. Cf. also Cantor 1878, where it can be said that both mathematicians took manifolds as sets.

52 Riemann 1868, 133: “Ich habe mir daher zunächst die Aufgabe gestellt, den Begriff einer mehrfach 

ausgedehnten Größe aus allgemeinen Größenbegriffen zu construiren.”

53 Young/Young 1905, vii.
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3.1 Fuller and Semper: folds and interlaces

Folds and folding are not the primary consideration in Fuller’s work. However, the most 

characteristic of his artifacts – should they be experimental buildings, maps or geometric 

modeling – are indeed folded or otherwise rely on folding as a deforming operation, as 

can be seen in fig. 1.54 Considering how vitally important folds and folding were for Fuller’s 

practical design, his remarks on the issue were dispensed sparingly, with most dedicated 

to specific problems of folding, such as the great circles.55 Where one would otherwise 

expect a theory of folding to accompany Fuller’s rich discourse on design, it is only found 

implicitly in his artifacts and the geometry of the Synergetics.56 This disproportionality 

calls upon us to rediscover a tacit theoretical foundation from which to reconstruct the 

fold and the deforming operation.

54 See also fig. 6 and 7: the Jitterbug transformation.

55 Fuller 1975a (sections 450 – 9) demonstrates eight models (a cuboctahedron and an octahedron, among 

others) that can be constructed by folding whole circles (with a protractor, using origami-style folding). 

See Fuller 1975a, section 459.03: “The six great circles of the icosahedron can be folded from central 

angles of 36 degrees each to form six pentagonal bow ties.” Cf. also Fearnley 2009.

56 The changing and developing relationship between theory and design in Fuller’s work is seen in: 

Krausse/Lichtenstein 1999; Krausse/Lichtenstein 2001.

Fig. 1: Necklace-Dome: One of the first folded geodesic domes of Fuller, done in 1950.
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In his earlier studies Fuller examined ways to reduce weight loads in architecture and 

construction. He was famous for provoking fellow architects with the question: “Does 

anybody know what a given building weighs?”57 Weight load reduction, employed as a 

design strategy, was for him a means for examining economical and efficient construction. 

Fuller noted how weight specifications come up naturally in the design of marine vessels, 

vehicles and aircrafts, while in building construction this information is considered 

irrelevant. His question attempted to bridge the gap between the two practices (or 

mentalities): the mobile and the stationary.

Techniques for consolidation, folding and size or shape adaptation are present in all 

mobile forms of human habitation (such as tents, yurts and tipis). This is true not only 

for the architectural structures themselves, but also for equipment and furniture that 

go along with them. For a nomadic way of life, weight is not the only crucial criterion. 

Objects belonging to the household must fit requirements for transport. Folding fulfills 

these requirements in great measure: it allows objects to assume various shapes, being 

either flattened or spatially expanded. Folding allows for a transformation, with which 

objects can be adapted to mobility. Folds are thus both a result and an expression of 

movements, whose event-patterns Fuller summarizes under the concept of precession.58

One can observe firsthand the direct link between movement and folding in everyday 

clothes and textiles: dresses, cloaks, curtains, carpets and so on, as well as adjustable 

flexible space partitions.59 The fact that, under this aspect of regulation between inner 

and outer, a systemic correspondence between organisms and artifacts can be devised, 

is not least suggested by the fact that the use of hides of animals and barks of trees 

belongs to one of the oldest techniques for space subdivision. 

The architect Gottfried Semper (1803 –1879), regarded as one of the originators of research 

into material culture, derived his theory of architecture from primitive artifacts, such as 

clothing, used for space partition. This theory finds expression in his monumental work 

Style in the Technical and Tectonic Arts; or Practical Aesthetics (1860 –3).60 What is of special 

57 “Does anybody know what a given building weighs? I once asked an American Symposium of architects 

including Raymond Hood and Frank Lloyd Wright as well as the architects of Rockefeller Centre, the 

Empire State Building and the Chrysler Building what the different structures they were designing 

weighed. Clearly, weight was not one of their considerations. They didn’t know.” In: Fuller 1963, 53.

58 “The effects of all components of Universe in motion upon any other component in motion is 

precession, and in as much as all the component patterns of Universe seem to be motion patterns, is 

whatever degree they affect one another, they are inter-affecting one another precessionaly, and they are 

bringing about resultants other than 180 degrees. Precess means that two or more bodies move in an 

interrelationship pattern of other than 180 degrees.” In: Fuller 1975a (section 533.01), 287.

59 Fuller encompasses an overarching notion of a dwelling place with “environment controls.” See Fuller 

1963, 55 ff; Compare Krausse 2002b, 97 ff.

60 Semper 2004.
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interest for us here is his account of the textile origins of architectural space enclosures, 

exemplified through the wall as an architectural element. In his draft of 1853 he writes: 

“We have in our German language a word which signifies the visible 

part of the wall, we call this part of the wall, die Wand, a word which 

as a common root and is nearly the same with Gewand which signifies 

woven stuff; the constructive part of the wall has another name, we 

call it Mauer. This is very denoting.”61

“Denoting” hence distinctive. Here one finds not only two classes of materials – fabric and 

fiber on the one hand, rocks and soil on the other – but also two different principles of 

structure, reflected in two different types of construction. While hard crystalline materials 

tend to resist compressive forces till they give way to pressure in the form of fractures 

and fissures, fiber-based materials absorb tensile, attractive forces and bending stresses; 

in contrast to crystalline materials they are flexible. Semper shows in his early writings, 

it is the latter that preceded masonry.

“It is a fact,” he writes, “that the first attempts of industrial art, which 

have been made and which we still observe to be made by human 

beings, standing on the sill of civilization, are dresses and mats. This 

part of industry is observed to be known even by tribes, which have 

no idea of dressing.”62

Plaits, carpets, interlaces and hangings were originally used for space arrangement and 

partition, to which solid structures were subsequently added,

“the thick stone-walls, were only necessary with respect to other 

secondary considerations, as for instance to give strength, stability, 

security etc. Where these secondary considerations had no place, 

there remained the hangings the only means of separation; and even 

when the first became necessary, they formed only the inner scaffold 

of the true representative of the walls, namely the variegated hangings 

and tapestries.”63

Semper demonstrated how these elements enable flexible interior partitions.64 Flexibility 

and mobility originally form a unit that is lost with the use of solid structures, and must 

61 Semper 1983, 21.

62 Ibid.

63 Ibid.

64 As an example, Semper cites the Caribbean hut in which the walls are transferable and not connected to 

the roof. Cf. Semper 1986, 34f.
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be compensated for using doors. This idea experienced a modernist revival in the form 

of mobile room dividers and separators, sliding doors and accordion folding partitions. A 

most striking example is found in curtain walls, whose construction in recessed reinforced 

concrete columns (as in Bauhaus Dessau 1926) accounts for the old truth: the space-en-

closing elements of architecture are in effect suspension structures subject to tension.

3.2 Fuller’s non-simultaneous foldings

Semper’s reintroduction of fiber-based materials into the processing and manipulation 

of form was taken on by Fuller; this time of course under the conditions of advanced 

industrialization, new materials, innovative construction techniques and global trans-

portation systems. Fuller defines the fundamental relationship of human existence to 

mobility as follows:

“Man was designed with legs – not roots. He is destined to ever-increas-

ing freedom of individually selected motions, articulated in preferred 

directions, as his spaceship, Earth, spinning its equator at 1000 miles 

per hour, orbits the sun at one million miles per day, as all the while 

the quadrillions of atomic components of which man is composed 

inter-gyrate and transform at seven million miles per hour. Both man 

and universe are indeed complex aggregated of motion.”65

This is a concise summary of what Fuller called scenario universe. It is this scenario that 

forms an indispensable part of the exposition to Fuller’s energetic-synergetic geometry.66 

A scenario is favored over theorems or axioms; it emphasizes the a priori temporality 

of a (geometrical) event:

“The Universe”, so presented in his book Synergetics, “can only be 

thought of competently in terms of a great unending, but finite sce-

nario whose as yet unfilled film-strip is constantly self-regenerative […]. 

Our Universe is finite but non-simultaneously conceptual: a moving 

picture scenario of non-simultaneous and only partially overlapping 

events”.67

The reference to the scenario and to the agility and mobility of the film expresses Fuller’s 

deep mistrust in the image, the still image, the single frame with its implied immobility. 

65 Fuller 1969, 348.

66 Fuller 1975a (section 320.01 – 02), 87.

67 Ibid.
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The single image evokes the illusion of simultaneity of events, as in the image of the 

starry sky, an image that exhibits light, which in fact emanated from stars at different 

moments in time.

Only when considering longer time spans can one observe evolution and metamorphosis 

in nature. An emphasis on non-simultaneity (with partial overlapping at the most) is also 

present in the way ‘folding’ is present in the German words Überlegung and überlegen. The 

verb überlegen has indeed the following three different meanings: 1) cover; coat; overlap, 

2) consider; contemplate, 3) lay an object down over another object.68

The introduction of the scenario, as a form of thinking and of presentation, allows us 

to work with partially overlapping events, where scenarios are both descriptive and 

prescriptive – prescriptive with respect to actions that would be performed, carried out 

and so executed.69 The performative aspect of the scenario also plays a role in Fuller’s 

geometry, which insists on the embodiment and the materialization of geometric figures 

in the model, as well as in the live-performance of transformations that he discovered.

How did Fuller come to adopt the scenario as a framework for cognition? We already 

detect its origins in his first architectural project, as a framework for design. The structure, 

which he has in mind, is not developed in response to the layout of its designated lot, 

but in accordance with easy transport. The tower house, which was designed in 1928, 

could be industrially prefabricated and then shipped by air (with a Zeppelin); it could be 

delivered to any location on the globe. Fuller, even before clarifying what was needed and 

implied in constructing such a house, first simulated this unprecedented procedure. To 

that end, Fuller drew a series of sketches in the manner of a comic strip, which depicted 

the key events of this scenario.70

Fuller’s recordings from this period show how attentively he followed the development 

of this popular genre and reflects on its potential as a form of presentation: “Undeniably 

the ‘funnies’ are the most generally inspected portions of our daily newspapers and may 

be considered the economic frosting that sells the cake – It is more than significant that 

these funnies have completely lost race of ‘slapstick’ and have become serials of handy 

philosophy.”71 Even later on, in his preparation of maps and diagrams of complex global 

data (world energy map, global transport development, history of isolation of chemical 

elements), Fuller insisted on “maintaining a comic strip lucidity”.72

68 Grimm 1936, column 385.

69 Regarding the various aspects of performance in Fuller’s work, cf. Krausse 2016.

70 Krausse/Lichtenstein 1999, 99 –103.

71 Krausse/Lichtenstein 2001, 102. 

72 Ibid, 152 (from Fuller’s Earth incorporated (1947)).
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Traces of scenario-thinking, partial overlapping and comic-strip lucidity can be found 

also in Fuller’s pictorial depiction of the construciton process. Take for example the 

sequence of photos that illustrated the construction of the Dymaxion house starting from 

its components, through the individual assembling steps, to the finished and furnished 

residential house. The same pattern appeared in his second attempt to build this house 

– albeit with an altered outline – in an aircraft factory. This time it was indeed realised as 

a prototype.73 Besides the process of assembling, the most important thing about this 

sequence of photos is its demonstration of initial and final construction stages: the initial 

assembly of lightweight thin parts, occupying but little space, set against the finished 

space-consuming building. Before construction commences, building parts are laid out 

as one spreads clothes before packing a suitcase.

In this way one may inspect all components in order; they were designed to fit into a 

container in the most space efficient way. In the case of the Wichita house of 1946, the 

cylindrical, metal, storage container served also a key structural element of the building. 

Packaging aligns well with the concept and practice of folding. Transportation to and 

unpacking at the construction site need to be taken into account in the design of the 

container and its contents. Unpacking should fit color-coded step-by-step assembly all 

the way up to the finished, fully furnished, turn-key house. This turns building into a 

performance that follows a precise scenario.74

It is no coincidence, that this performance, as in a sequence of movie frames, resembles 

the process of the unfolding of a plant from seed to bud to leaf, save that its origin goes 

back to design, from which mechanical parts are developed as affiliated and connected. 

3.3 Seedpods, Viruses and Geodesic domes

Fuller related design scenarios to organic growth processes on various occasions. One of 

his experimental constructions, the Flying Seedpod of 1953, is a pure folding mechanism.75 

Flying Seedpod is a dome, 42 feet in diameter, which can set itself up semi-automatically. 

Whether compacted as a transportable bundle or deployed as an architectural structure, 

73 The corresponding photo series of the Dymaxion House and the Wichita dwelling machine are printed 

in: Marks 1960, 84 f and 128 –133. 

74 Fuller’s scenario-thinking looks beyond the finished product onto its ultimate end-of-use. With its 

structures he envisages “demountability”, with its materials, “recirculation.” Responsibility in design 

extends to the entire life cycle of the product – what Fuller called “cradle-to-grave.” It took the combination 

of product-cycle together with recycling to go from “cradle-to-grave” to the slogan “cradle-to-cradle”. 

Regarding “demountability” cf. Marks 1960, 112 –113. Regarding recycling, cf. Fuller 1938, chapter 38, 

316 – 322; Reprint in: Krausse/Lichtenstein 2001, 117 –120. Regarding “cradle-to-cradle”, cf. Braungart/

McDonough 2009.

75 See fig. 2: series of four photos “Flying Seedpod” 1954/5.
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all parts stay connected to each other by flexible nodes or joints. The bundle consists 

of 30 inwardly folded tripods, whose chains come together in ball joints. The system of 

tripods can be unfolded and straightened up by extending pistons in pneumatic cylinders 

– radially directed tubes at the vertices of the dome. With the extension of pistons, a net 

made of cables is stretched. The clear span unsupported dome-structure obtains firmness 

and rigidity, through the interaction of its push-pull components. Flying Seedpod was 

a project that Fuller realized in 1953 with students from Washington University (fig. 2).

The study of folding structures of geodesic domes developed alongside progress in space 

exploration missions, so that one might see in Flying Seedpods – “the first scientifically 

designed apartment” – a rocket capsule to the moon.76 

Though the seedpod was nicknamed “the moon structure,” it did not fly to the moon. 

Instead it appeared in other ways in the world of molecular biology. Fuller tells how it 

came about: 

76 “You may possibly be looking at the prototype of the structural principles that we may use in sending 

history’s first (little) scientific dwelling to the moon. As you see, all the structural members are tightly 

bundles together in parallel so that they may be transported in minimum volume within a rocket capsule.” 

In: Fuller 1965, 70; Fuller’s foundations for folding structures were later continued by his pupil Joe Clinton 

for NASA. Cf. Clinton 1971.

Fig. 2: Flying Seedpod. Washington University, St. Louis, 1953; A folding-out geodesic structure.
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“The principle of structural dynamics of the […] moon structure, the 

flying seedpod and its logistic pattern transformability, are double 

interesting because they have turned out to be also the same structural, 

self-realization system employed by a class of microcosmic struc-

tures – the protein shells of all the different types of viruses. About 

three and one half years ago molecular biologists in England and their 

colleagues in America, working in teams, were trying to discover the 

structural characteristics of the protein shells of the viruses with X-ray 

diffraction photographic analysis. These virus scientists discovered 

that the viruses’ protein shells were all some type of spherical geodesic 

structure. Having previously seen published pictures of my geodesic 

structures they corresponded with me and I was able to give them 

the mathematics and show them how and why these structures occur 

and behave as they do. They have now found the poliovirus structure 

to be the same structure as the possible ‘moon structure’. The polio 

virus instead of having the tripods on the outside and the clusters of 

five and six feet on the inside, has the five – and six – way jointings 

outside and the tripods or three–ways on the inside.”77 

The encounter between Fuller’s experimental architectural structures and science of 

the day could be passed for incidental – a random correspondence between structures 

on widely disparate scales – if not for geometry that provides a connection of a more 

general nature.

The researchers at Birkbeck College in London engaged with a striking resemblance 

between viral capsids and Fuller’s geodesic domes,78 when the largest was just completed, 

almost 120 m in diameter, making it the largest ever built clear span dome.79 It appeared 

as if the same such spherical structure found in nature was anticipated by Fuller, or 

rather as if he had built his geodesic domes according to models from nature. The first 

recorded images of capsids produced by an electron microscope were published in 

1962; they finally made resemblance evident.80 On this basis and other of Fuller’s 1960 

77 Fuller 1965, 72.

78 Cf. Morgan 2003, 86: “In the mid 1950s, Francis Crick and James Watson attempted to explain the 

structure of spherical viruses. […] biophysical and electron micrographic data suggested that many 

viruses had > 60 subunits. Drawing inspiration from [Fuller’s geodesic domes and] architecture, Donald 

Caspar and Aaron Klug […] proposed that spherical viruses were structured like miniature geodesic 

domes,” by forming a (protein) shell. Indeed, “[t]he idea was that identical viral subunits could bind 

together in quasi-equivalent positions to form a shell with > 60 subunits while conserving the same 

specific contact pattern between subunits” (ibid, 88).

79 Union Tankcar Company Geodesicdomes, Baton Rouge, Louisiana; Railway repair facility, October 1958, 

cf. Marks 1960, 222f.

80 Ubell 1962, 1.
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architectural structures, the mathematician Harold Scott MacDonald Coxeter was able 

to match individual domes, each slightly different in its geometric resolution of geodetic 

networks, to individual types of viruses, whose capsids likewise vary geometrically.81 

This new visual input, brought to bear through advances in electron microscopy (EM), 

made the resemblance even more apparent in microorganisms. Fuller got to see electron 

microscope images of marine microorganisms (magnified up to about 50,000 times), 

taken by biologist Gerhard Helmcke (who specialized in lightweight constructions in 

nature), in a 1962 meeting together with his colleague Frei Otto and Helmcke himself. 

The architect Frei Otto, who had just launched the research group Biology and Building, 

later reported how impressed Fuller was:

“The stereoscopic photographs looked like models of [Fuller’s] famous 

domes. To the participants it was clear: Had he [Fuller] known the 

diatom shells before, the whole world would have said that he had 

learnt this by watching the living nature. Had he knew the diatom 

shells, how they were really, he would not have probably dared to 

build his shells.”82 

When Fuller met Aaron Klug and his interdisciplinary team of researchers in July 1959 

there were no clear images yet, only clues coming from the X-Ray analysis of crystals. 

Even when Klug succeeded in applying crystallographic EM to the analysis of complex 

viral capsids, the images obtained were rather confusing: due to its extensive depth of 

focus, all structures were depicted one on top the other. Klug, who received the Nobel 

Prize in Chemistry in 1982 for this work and others, remarked in his Nobel lecture: “Thus, 

we knew what we were looking for, but we soon found that we did not understand what 

we were looking at”.83 Fuller’s geodesic domes served not only as a possible guide to 

deciphering those EM images. They were geometrical models at large which allowed 

patter recognition of an unidentified micro-phenomenon.

3.4 Platonic solids: a stable habitat?

The point of contact between Fuller’s designs and structural chemistry is derived from a 

functional correspondence: both deal with a problem of habitation that needs to be solved 

with utmost care for resources – one might consider protein shells to be the smallest 

houses in nature. In the case of the virus the space within is occupied by DNA and RNA 

molecules, which are densely folded and packed waiting for a suitable host to open the 

81 Coxeter 1971. On the relationship between Coxeter and Fuller, see Roberts 2006, chapter 9.

82 Otto 1985, 8.

83 Klug 1992, 89.



162 Michael Friedman, Joachim Krausse

protein shell. Nevertheless, both Fuller’s domes and capsids represent an attempt to 

solve an optimization problem – maximum capacity for the smallest surface area. The 

geometric solution to the problem is the sphere, which both Fuller and viruses opt for.84 

Turning now to the structural elements of an approximately spherical casing or shell, a 

method of regular subdivision of the sphere must be developed.

In subdividing the sphere, Fuller – similarly to viruses, marine microorganisms and carbon 

molecules – chooses another way, compared with dividing the globe into a network of 

longitudes and latitudes. He avoids the classical construction of a dome using meridian 

groins and horizontal rings or bands. Instead, the sphere is symmetrically divided into 

regular polygons, described by Plato as the Elements in his dialog Timaeus.

Common to all Platonic solids – the tetrahedron, hexahedron (cube), octahedron, do-

decahedron and icosahedron – is that their vertices lie on a circumscribed sphere and 

their edges, once projected onto the circumscribed sphere, form arc segments of equal 

length. The arc segments are all part of great circles. Roughly speaking, great circles 

are the paths of minimal length on the sphere. They correspond to the straight lines of 

Euclidean geometry. Together, great circles and lines belong to a class of paths known as 

geodesics. Back to Platonic solids, the system of geodesic segments, obtained through 

projection onto the circumscribed sphere, forms a regular grid that divides the surface 

of the ball into equal polygons.

With the icosahedron, one obtains the most tightly arranged subdivision; it consists of 20 

equilateral triangles adjoining along 30 edges and touching at 12 vertices. According to 

Euler’s characteristic formula, V– E+ F = 2, where V denotes the number of vertices, E the 

number and F the number of faces. Five edges meet at the vertices of the icosahedron. A 

fivefold rotation symmetry is maintained throughout all of its subdivisions. This becomes 

clear when one looks at the truncated icosahedron:85 the 12 vertices are trimmed; one 

third of each edge is truncated at each of both ends, resulting in a new polyhedron 

consisting of 12 pentagons and 20 hexagons, with each pentagon surrounded by five 

regular hexagons. The truncation of the icosahedron affords a way to refine the spherical 

subdivision thereby better approximating a sphere. The truncated icosahedron is now well 

known for the Telstar football and the discovery of the carbon molecule C60. The 1996 

chemistry Nobel laureates, Harold Kroto, Richard Smalley and Robert Curl, responsible 

for the discovery, named it Buckminsterfullerene in recognition of the architect’s work.86

84 We leave aside a class of rod-shaped viruses such as the prototypical tobacco mosaic virus.

85 Comprising 32 faces, 90 edges and 60 vertices.

86 Kroto 1996. See also Krausse 2002a.
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3.5 From folding and foldable platonic solids to the Jitterbug transformation

A question that occupied virologists was whether viral capsids – comprising at least 

120 protein subunits under seemingly identical conditions – contrived their structure in 

a manner similar to Fuller’s geodesic domes, domes which might have more than 180 

of triangular subunits. These domes are able to modify themselves slightly, such that 

they arrange themselves according to a geodesic grid on a sphere.87 Fuller could clarify 

this through his grid and through a formula, describing the total number of edges of 

these triangulated domes. Situating at every corner of a triangle a ball of radius 1, Fuller 

imagined a growing shell structure, beginning with the 12 balls, whose center situated 

on the surface of a sphere, then while the structure grows and another layer is situated 

symmetrically on the outside of the former layer, there are 42 balls, then 92 balls and so 

on, according to the formula: n = 10 f 2+2. With this formula, Fuller bases his calculation 

on the cuboctahedron, being one of the 14 semi-regular Archimedean polyhedra: while 

inscribing a cuboctahedron with edge length 1 in a sphere, Fuller instructs, as explained 

above, to posit 12 balls centered on the vertices. As one may enlarge the sphere and the 

cuboctahedron (when now the edge length of the cuboctahedron is 2), one may posit 42 

balls centered on the vertices, edges and faces of the cuboctahedron. In Fuller’s formula 

n stands for the balls situated symmetrically in the growing shells, where f stands for the 

number of the layers of these growing structures.88 And the higher the frequency – that 

is, the number of layers, the greater the number of balls and hence triangular subunits 

(created by drawing a line between three adjacent, tangent balls) is and the more fine-

meshed the network of geodetic structures. Fuller adds that “[t]hese successive layers, 

which permeate each other in all directions may be identified with energy waves radiant 

in all directions from a nucleus.”89 By “nucleus” Fuller points to the fact, that while 

situating the 12 balls of radius 1 on the sphere, having their center as the vertices of the 

cuboctahedron, there is a room for an additional ball – called “nucleus”, located exactly 

in the center of the sphere and touches all the other 12 balls (see fig. 5).

Fuller’s mathematical model was therefore not developed from the icosahedron or from 

any of the other Platonic solids: as we will explain later, when balls are positioned at the 

vertices of the icosahedron, the structure thus obtained does not have a nucleus, from 

which “energy waves” emanate. To see how a nucleus is necessary, one constructs 

87 “[…] we have discovered that the way these viruses were built was similar to the way the geodesic domes 

were Built. Geometrically you cannot put more than 60 identical units on the surface of a sphere with 

each one making identical contacts […] The virus we had been working on had 180 sub-units – three 

times 60 – so they couldn’t all be in identical environments.” In: Klug 1995, 10.

88 For a detailed explanation, see: Edmondson 1987, 114 –116. For a proof of Fuller’s statement:  

Coxeter 1974.

89 Krausse/Lichtenstein 2001, 169.
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dense sphere packing using identical spheres. By connecting the centers of spheres in 

certain arrangements one can obtain the elementary forms, for example Platonic solids. 

Sphere-packing arrangements – being an arrangement of non-overlapping, possibly 

touching spheres – go back to Johannes Kepler’s 1611 book De Nive sexangula. In it Kepler 

distinguishes between two types of packing: one that forms a cube and another that 

forms a tetrahedron.90 Kepler’s book is primarily an investigation into the hexagonal form 

of snowflakes. As to the densest space-filling arrangement of spheres, Kepler conjec-

tured that the tightest packing produces rhomboidal aggregates, known as the rhombic 

dodecahedral honeycomb. The density η of a packing of solid spheres is today defined as:

η = lim  
∑
∞

i= 1 μ (Ki ∩ Bt )

μ (Bt
)t → ∞

where μ(X) is the volume of X, Bt is a ball of radius t centered at the origin, and Ki are 

balls which are used for the packing.91 It follows that the density of a packing of balls is 

always smaller then 1. When Kepler discusses sphere packing, he proposes two types. 

The first is the simple cubic packing and the second is what is called today an FCC packing, 

i.e. the hexagonal arrangement. On the cubic arrangement, Kepler concludes: “The 

arrangement will be cubic, and the pellets, when subjected to pressure, will become cubes. 

But this will not be the tightest pack.” However, when considering the second packing, 

Kepler remarks that “[t]his arrangement will be more comparable to the octahedron 

and pyramid. The packing will be the tightest possible, so that in no other arrangement 

could more pellets be stuffed into the same container”.92 It is known today that the 

density of the FCC packing is π ⁄(3√2)∼0.7405 , whereas the density of the simple cubic 

90 See: Kepler 1966. See also fig. 3.

91 See e.g. Conway/Sloane 2013, 8.

92 Kepler [1611] 1966, 15.

Fig. 3: Kepler’s two types of planar packing of spheres.
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packing is approximately 0.6802, but Kepler does not give any reason why this pyramidal 

arrangement is the densest. 93

Fuller studied sphere packing through his work on the suspended construction of the 

Dymaxion House. For this purpose, he used cables wrapped around an inner rope. When 

cross-sectioning the cables, one sees that the cross-section consists accordingly of six 

units around one center (“six around one”. See fig. 4b).94 In this cross-sectioning Fuller 

sees a prototype of symmetrical growth. Fuller’s first study of a wave-mechanical matrix 

appears in grids for his hexagonal layout of the house on a mast, in which the intervals 

are specified not only in length dimensions, but also in time units.95 The initial intuition 

for the matrix (or isotropic vector matrix) is found in the hexagonal configuration packed 

with circles: it belongs to the class of two-dimensional densest packing. Connecting the 

centers of adjacent circles with lines, one obtains a part of a configuration of 9 triangles, 

which the Pythagoreans called tetractys, as can be seen in fig. 4a. 

93 Kepler’s assertion, better known as the Kepler’s conjecture (that the densest packing of identical balls in 

space is either a cubic arrangement or an hexagonal arrangement), was proved only in 2014 by Thomas Hales.

94 In the magazine he edited SHELTER (November 1932, 106 –107) Fuller assembled pictures that, inter alia, 

show snow crystals, cable cross-sections and the Dymaxion House hexagonal plan. See facsimile reprint 

in: Krausse/Lichtenstein 1999, 172 –173.

95 Krausse/Lichtenstein 1999, 114 f. “Time based plan for the 4D House”, Figure 1928.

Fig. 4: (a) Only with the most right image (the tetractys) one may notice the appearance of the nucleus, in the 

middle of the inscribed hexagon. (b) Fuller's “six around one” construction, obtained from the tetractys. The 

nucleus is the grey circle.

(a)

(b)
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When extending this method to three-dimensional densest packing modeled on the 

cuboctahedron, Fuller indicates: 

“When the centers of equiradius spheres in closest packing are joined 

with lines [i.e. a possibly infinite truss modeled as the cuboctahedron], 

an isotropic vector matrix is formed. This constitutes an array of equi-

lateral triangles which is seen as the comprehensive coordination 

frame of reference of nature’s most economical, most comfortable 

structural interrelationships employing 60-degree association and 

disassociation.”96

What Fuller searched for becomes clear in his 1938 book Nine Chains to the Moon. There 

Fuller calls for a time-based geometry that takes into account propagation of waves and 

rays and growth processes in space and time: “Time, or how far (or more properly ‘fast’) 

radially outward, in time and space, integrated as rate or the center of the sphere.”97 The 

mental image Fuller uses is that of the “expanding sphere” or the “halo” – a radiation in 

all directions. As was seen above, Fuller finds a framework for such processes in a poly-

hedron consisting of 8 triangles and 6 squares: the cuboctahedron. In its representation 

using sphere packing there are not “six around one” but rather “twelve around one.”98 Its 

shell consists of 12 balls. Growing symmetrically with additional layers, 42, 92, 162, 362 

(or more) spheres can be packed. The cuboctahedron may be regarded a form of sphere 

packing: it forms a shell of 12 balls with a nucleus. Having a different shape compared 

with that of the cuboctahedron, one might say the icosahedron consists merely of a shell, 

whereas the cuboctahedron has its nucleus, as noted above and as can be seen in fig. 5.

96 Fuller 1975a, caption to figure 420.02 (our italics).

97 Fuller 1938, 134.

98 Fuller 1975a, 116 –120, section 413.00.

Fig. 5: On the left, a packing of 12 white balls, where the center of each (white) ball is placed on a vertex of a 

cuboctahedron; note the existence of a grey nucleus. On the right, a packing of 12 balls, where the center of each 

ball is placed on a vertex of the icosahedron; in this case there is no space for a nucleus of the same size. Note 

that the density of the icosahedral packing is approx. 0.6882, being lower than the density of the FCC packing.
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Since the hollowed space in the center of the icosahedron has smaller dimensions com-

pared with the ball in the nucleus of the cuboctahedron, the radii of the balls layering the 

icosahedron are somewhat shorter than the edges. Therefore, the icosahedron cannot 

provide a basis – a matrix, in Fuller’s terminology – for symmetrical growth processes. It 

always remains the same perfect space division, through all of its modifications: be it a 

capsid, a shell or a geodesic dome. Conversely, the cuboctahedron provides a matrix for 

growth processes – what Fuller refers to by “isotropic vector matrix” – but is unsuitable as 

a building structure. The six square faces of the cuboctahedron lack stabilizing diagonals. 

Fuller has repeatedly demonstrated this effect, for example, in his Necklace Performance.99 

A square, according to Fuller, is not a structure; it is a temporary opening at the most. 

Only the triangle is a structure, as it is self-stabilizing. This feature appears only when 

one builds the cuboctahedron as a model and connects the rods with flexible joints.

These and many other aspects come to light in a geometric transformation Fuller named 

Jitterbug after a 1940 popular dance. Though there are different ways to dance the Jitter-

bug,100 we will limit ourselves to one, the easiest, which is performed with a model. The 

model consists of 24 individual rods that may move while being connected to flexible 

nodes. Thus, various configurations can be produced via folding. It begins with the most 

extended configuration: the cuboctahedron. Though the cuboctahedron also has square 

faces, we focus on the behavior of the triangles during the transformations (see fig. 6 and 

7). Its 14 faces can be seen clearly, and it is evident via touching that the cuboctahedron 

is not rigid. When slight pressure is applied to the model’s upper triangle, the result is 

a left or right rotation of the remaining triangles. This draws the 6 squares in a diagonal 

direction, deforming them into rhombi. At this point the squares crease, forming an 

invisible, “silent” edge, while an inserted rod could have prevented this deformation. 

When the rods are inserted in the middle of the creased squares, the result is of an 

icosahedron: each folded rhombus supplies 2 triangles. A total of 12 new triangles plus 

the original 8 add up to the 20 triangles of the icosahedron. In the absence of intervention 

to stop the process of folding it goes on: adjacent edges of the cuboctahedron’s original 

squares join in pairs. The result is an octahedron, whose 8 triangles are formed with 

double-tipped edges. The next two stages of the Jitterbug transformation are more 

complicated since they require further extension and folding of area, suffice it to say, 

this procedure produces a tetrahedron, with quadruple edges and culminates in a planar 

triangle with eightfold edges. Throughout the process of transformation the polyhedra 

emerge in a process of phase transitions.

99 Fuller 1975a, 317 – 319, sections 608.00 – 609.01.

100 Cf. “Five ways to dance the jitterbug” in Krausse/Lichtenstein 2001, 24 – 33.
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The Jitterbug transformation demonstrates convertibility in a rigid and stable structure; 

it demonstrates metamorphosis from one “solid” into the next in a single, continuous 

process of contraction and expansion up to the structure’s limits. This metamorphosis 

not only offers a different view on geometry, it also offers another perspective on thought: 

equally abundant in forms, the Jitterbug transformation is also abundant in patterns of 

movement. Fuller demonstrates ongoing articulations of movement have a relationship 

to epistemology:

Fig. 6: The initial and the final position of the Jitterbug transformation cuboctahedron and triangle.

Fig. 7: Photos taken from R. Buckminster Fuller’s 1975 lecture “The Vector Equilibrium”, where several stages 

of the Jitterbug transformation are presented.
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“There is quite possible a scientific truth to be evolved from the fact 

that motion, particularly rhythmic motion, is highly provocative of 

thought objectivation. Certainly travel provides perspective, broad 

angles, and accelerated progression potential of clarification of the 

experience trend.”101 

4. Folding: The provocation of thought

Mobile structures, as with the Jitterbug transformation, are at the core of Fuller’s thought. 

Opposing geometry’s withdrawal from materiality and architecture’s withdrawal from 

mobility, Fuller suggests a revival of both concepts back into geometry. Indeed, partial 

overlapping and non-simultaneity are pilled off via the axiomatized mechanized concep-

tion of geometry – as all lines and axioms appear at once – whereas the mathematization 

of the fold ignores its materiality as a guiding principle. Following Semper and taking 

the German word Überlegung as a cue, folding suggests an interlacing of thought and 

contemplation together with a materialized geometry and partially overlapping events. 

This enables Fuller to tie together his conception of geometry as a material mathematical 

science – a point is a place where two lines pass through but not at the same time – and 

the scenario as a form of thinking. Folding, weaving and interlacing engender this form 

of thinking. As Semper indicated, it is flexible, mobile, foldable interior partitions that 

enable the wall to be a pure structural element, not the other way around. Fuller takes 

on this viewpoint and pursues it into the macroscopic world (seedpods and the dance 

of human beings) as well as into the microscopic world (inspiring the discovery of the 

structure of viral capsids through his geodesic domes). It is indeed the same line of 

thought that is apparent in Fuller’s work: geometry, whose essence in exemplified in 

the folding and unfolding of platonic solids as they metamorphose through the Jitter-

bug transformation, is not a rigid structure that lacks movement or consideration to 

materiality, but rather it is the thought-provoking scenario universe of material, flexible, 

non-simultaneous, partial overlapping. 

101 Fuller 1938, 139.
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An Introduction into the Physics of 

Self-folding Thin Structures

Introduction

Spontaneous folding of matter has long been the subject of disparate branches of research, 

from the earlier vitalistic view of Leibniz1 to the mathematical description of morphoge-

netic processes of D’Arcy Thompson.2 Today, scientific advancements have shown how 

folding is a common strategy adopted in biological systems to build up more and more 

complex structures – in proteins, from a peptide chain to a functional enzyme; in plants, 

from bud petals to a developed flower; in organisms, from layers of cells to diversified 

embryos. One might think that such folding processes require exceptionally complex 

biological machineries to orchestrate them. On the contrary, with this contribution, we 

will show that folding can result from remarkably simple processes – and equally applies 

to both natural and artificial systems. In the following we will introduce the reader to the 

necessary theoretical concepts that are needed to understand these phenomena, providing 

examples from the common experience enabling a more systematic understanding.

When we talk about self-folding 3 thin structures we refer to a broad class of spontaneous 

shape changes (that is not caused by an external load) that occur in thin bodies. The 

adjective thin here means that a three-dimensional body has at least one dimension 

much smaller than the other; that is, a rod can be considered one-dimensional since 

it has two small dimensions; a plate instead is two-dimensional since it has one small 

1 Deleuze 1993.

2 Thompson 1953.

3 In this document the terms layer, sheet, film are used as synonyms for plate. Similarly, folding stands 

for a generic out-of-plane deformation of a plate; other terms adopted for it are: bending, shape change, 

morphing, wrinkling, pattern formation.
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dimension. In particular we will refer to bodies that can be considered two-dimensional, 

that is plates (which are flat) and shells (which are curved). As will become clear in 

section 1, the fact that plates (and shells) are thin is at the base of the rich panorama of 

shape changes that are observed.

The goal of the present document is to provide an overview of some of the scientific 

literature dealing with shape changes in self-folding thin structures. Although these 

shape changes can be of a very different nature, size and origin – occurring in artificial 

as well as biological materials, and in systems that range from nanometer to centimeter 

sizes – all can be understood under some unifying concepts that will be introduced in the 

following. Thanks to our presentation, it becomes much easier to locate where research 

efforts have been focused until now and to identify new fields of interest that scientific 

research hasn’t addressed yet.

This document is organized as follows. In section 1 we introduce the reader to the basic 

concepts of the mechanics of a thin plate (the experienced reader can skip this part). In 

section 2 we will introduce many examples of self-folding systems, categorizing them on 

the base of how eigenstrains are distributed and orientated in the plate. In this section, 

we will discuss the folding (or more generally the morphing) of systems that: undergo 

confined expansion due to an attached elastic foundation (section 2.2); are subjected to 

the so-called edge growth (section 2.3); which change curvature (section 2.4). In section 

3 we will give some concluding remarks on the present work.

1 Mechanics of a thin plate: basic concepts and examples

In this section we introduce the reader to the mechanics of a thin plate through some 

guiding examples. In section 1.1 we will analyze simple deformation modes like stretch-

ing and bending, introduce the concept of buckling of a thin body and also clarify why 

these two modes cannot be separated for curved shells. In section 1.2 we will present 

the concept of eigenstrain and eigencurvature and some of the different strategies to 

generate these in natural and artificial materials.

1.1 Simple deformation modes of a thin body

1.1.1 What strains are

To be able to discuss any self-folding system, we need to “zoom” in the material that 

make up these objects and describe what happens locally when such shape changes 

occur. As a guiding example, we take a sheet of rubber (such as a deflated balloon), 

mark it with a circle enclosing a small portion and conduct a series of three “handheld” 
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experiments on it (fig. 1 a–c). If we stretch it, we see that the circle becomes elongated. 

If we now take half of the rubber piece and stretch it by the same amount we will see that 

the circle is now more elongated (the elongation is now double). Stretching the sheet 

along a different direction will cause the circle to elongate along that direction. A useful 

concept to group together these intuitive results is that of strain (usually associated to 

the greek letter Ɛ) in our examples the elongation of the circle with respect to its initial 

size. We see that the strain:

 › describes the shape change of the material locally

 › its magnitude can be evaluated from the ratio between the elongation and the size of 

the object – it is normalized

 › describes the shape change along all possible directions

Now let us draw two squares on the sheet, close together and in the center of the 

sheet, one with two sides parallel to the stretching direction and the other rotated by 

45° degrees. After stretching the sheet one has become a rectangle, the other one a 

rhombus (fig. 1 d–e).

Fig. 1: Visualizing strain in a rubber sheet under increasing loading (a to c); strain depends on its frame of 

reference: the principal directions identify directions of pure “size-changing” strains (square to rectangle) 

whereas other frame orientations will give also “shape-changing” strain components (square to rhombus) 
(d –e); imposing a curvature to a bar generates extensional/compressive strains on its convex /concave sides 
(f ); differently from the rubber example, an aluminum foil deformed above a small critical strain does not 

recover its initial shape when loads are removed (g – i).

a

d

g

b

e

h

c

f

i
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It seems that the first square experiences normal strains, which measure a change in 

length, while the other shear strains, which quantify a pure change in shape with no 

change in volume: this is counterintuitive because we expect that the rubber is subjected 

to the same strain state (at least close to the sheet center). This evidence shows that the 

strains depend on the frame of reference. It also shows that in each point one can find 

an orientation of this frame that make the shear strains null. When this happens, the 

strain tensor has only components on the diagonal, and they are called principal strains.

1.1.2 What stresses are

The reason why the circle elongates can be made manifest by cutting the circle out of 

the stretched rubber: then the circle becomes round again. If we stretch two identical 

overlapping sheets of rubber, we will need double the force to elongate the circle by 

the same amount. These evidences can be unified by a quantity – the stress, usually 

associated to the greek letter σ – which:

1. describes the net internal forces acting on the material locally (along all possible 

directions)

2. results from (and balances) the external forces of the surrounding material acting 

on the circle

3. is a measure of the forces acting in the material, normalized by the area of the surface 

on which the forces apply (in our example the area of the sheets’ cross-section)

Coming back to our experiments, we notice that releasing the rubber sheet causes it to 

return to its initial shape, regardless of the amount of force or elongation we applied. 

This ability is due to the rubber’s property – it is said to be elastic. Also, in the second 

experiment -stretching a half sheet by the same amount- we realize that the force we had 

to put on the rubber was, most probably, double. Recalling that also the strain doubled, 

it appears that the stress is proportional to the strain. The relationship between stress 

and strain is called the constitutive law of the material.4 This constitutive law serves 

to define the mechanical behavior of the material, and is a function of the material’s 

microstructure and chemical composition. In the case of rubber and many other solid 

materials at low strains this relationship is linear, meaning that stress and strains are 

related by proportionality constant. To summarize, rubber has a linear elastic behavior 

(at least for not too large strains): it is also said that it follows the Hooke’s law.5 Other 

materials (like the foil we use to wrap food, for example) would deform irreversibly when 

deformed above a certain strain (see fig. 1 g –i).

4 Callister 2007.

5 The Hooke’s law describes how linear springs behave mechanically: the force needed to extend a spring 

increases with its extension. The proportionality factor between force and extension is the spring rigidity 

constant.
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1.1.3 Bending of a plate 6

Instead of stretching the sheet, we now bend it. To highlight the strain when the sheet 

is bent, we draw equidistant lines on the sheet’s profile perpendicularly to the sheet’s 

long axis. At the curved site, the lines are now more closely spaced on the convex side 

and more widely spaced on the concave side (see fig. 1f ). This means that an imposed 

curvature 7 results in normal strains that adopt a “butterfly” distribution, negative at the 

convex and positive at the concave side, instead of a flat one as in the simple elongation 

case. Also this means that the average strains in the thickness are zero: the length of 

the sheet does not change, just its curvature.

When considering very thin bodies, we can make the assumption that their thickness is 

zero and study them as surfaces in three-dimensional space. Therefore the strain definition 

simplifies to only in-plane components that equal their average across the thickness. 

If a thin body is deformed in pure bending, under the small thickness hypothesis we 

would have zero energy for the bent state, because the average in-plane strain for pure 

bending (that is of the “butterfly” distribution) is zero. Therefore, to be able to properly 

describe the strain state we must define the curvature of the surface: then the imposed 

curvature will be associated with a strain energy. Comparing the amount of force put to 

bend the rubber sheet rather than stretching it, we clearly see how it is much easier to 

bend: the energy involved in bending is lower than in stretching, or equivalently, that 

the bending rigidity of a sheet is much lower than its axial rigidity. It can be shown that 

such mechanical behavior depends on the thin geometry of the plate: the bending energy 

has a prefactor h3 and therefore will be much smaller than the stretching energy (with 

prefactor h) when the plate thickness h  is small.

1.1.4 Buckling and stability: switching between stretching and bending modes

To understand how shape changes occur in thin bodies it is useful to introduce a simpler 

example of a bar subjected to an increasing axial compression. Initially the bar shortens: 

at every small increment of the axial load corresponds a small increment of the bar’s 

shortening. This fact is in accordance with the symmetry of the loading case: the bar is 

a one-dimensional body, the load is also directed along the bar’s axis. The deformation 

requires work to be done on the bar: this external work is stored as strain energy in the 

material. In other words, conservation of energy implies that we can equate this (exter-

nal) energy to an (internal) strain energy that depends from the stresses and strains. 

Coming back to the bar loading experiment, if the load passes a certain threshold the bar 

will start to bend: at this point it becomes easier to bring the ends of the bar together 

(lower load increments are required) and every increment in load will cause a large 

6 Most of the concepts introduced in this and the next two sections have been taken from: Audoly/

Pomeau 2010.

7 For a definition of curvature refer to section 1.1.5.
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deflection from the straight axis. This phenomenon is called buckling. It shows that for 

a mechanical system more than one equilibrium configuration are possible 8 (in our case, 

both the straight and slightly deflected ones are indeed possible at the buckling load 

threshold). In general the system will choose a deformation path which corresponds to 

lower energy: for a thin body (such as the bar but also a plate) this lower energy path is 

the bending mode. Moreover, since such buckling events are eventually caused by the 

different deformation modes that the material experiences, they can surface even in 

absence of external loading: such is the case of shape changes in the examples that will 

be provided in section 3, where buckling events are triggered by differential eigenstrains.

1.1.5 Geometry of a thin body and implications for its mechanical behavior

From a geometrical perspective, thin bodies can be considered as surfaces. To describe the 

shape of a surface in three dimensions, we first step back and consider, for simplicity, a line 

drawn on a plane. Its shape is characterized by the curvature, defined as the inverse of the 

radius of the circle tangent to it. For every point of the line the curvature is single-valued. If 

we consider a point on a generic surface instead, we can draw an infinite number of lines 

passing through that point. In this case each point is associated with an infinite number of 

curvatures depending on the orientation of the corresponding line. In reality these curvatures 

are related together: similarly to what we have seen for strain and stress, it suffices to know 

the two principal curvatures (the maximum and minimum curvatures of all possible ones), 

which are oriented along perpendicular directions, to fully characterize the curvature state.

Inspecting the values of the principal curvatures for different regular surfaces is instructive. 

Then for a plane both are clearly 0. For a cylinder 9 these are 0 and 1/R, respectively parallel 

and perpendicular to a straight line drawn on its surface. For a sphere these are both 1/R. 

Defining the mean curvature H as the average between the principal ones, we have a way 

to measure the total “amount of curvature”: the sphere has a higher curvature than the 

cylinder, which is more curved than the plane. Another fundamental measure of curvature 

is the Gaussian curvature KG, defined as the product of the principal ones (fig. 2). The 

meaning of KG can be easily understood by comparing its value in the three surfaces 

we just presented. Plane and cylinder have same Gaussian curvature KG = 0. Indeed a 

cylinder can be cut and unrolled to a planar state applying a pure bending deformation. 

On the contrary, this does not apply to a sphere. Recalling that bending deformations 

produces zero average in-plane strains of the surface, it now becomes clear that Gaussian 

curvature is related to the in-plane strains of the surface. In particular, KG identifies a 

surface’s metric, which is the way we calculate distances and areas on it. To grasp the 

concept of a surface’s metric we refer to the following experiment. We draw a circle of 

radius r on a sphere, a plane or a saddle-shaped surface (which have respectively KG > 0, 

8 Gambhir 2004.

9 Pressley 2009.
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KG = 0, KG < 0). We do this with the help of a thread (of length r), attaching one extremity 

to a point on the surface and the other one to a pen, taking care of keeping the thread 

in contact with the surface while tracing the circle. The length of the resulting circle will 

be 2πr on the plane, but lower and higher in the sphere and the saddle, respectively. 

The condition of KG = 0 identifies a special class of surfaces called developable surfaces, 

that are flat up to a bending deformation. The developability condition (KG = 0) implies that 

one of the two principal curvatures is zero (recalling that KG is defined as their product). 

We already have seen that a cylinder is a developable surface: in this case the direction 

of zero curvature is the same everywhere besides cylinders there are two more types of 

developable surfaces: cones and the so-called tangent developables. In each point of a 

cone, the zero curvature direction points to the cone’s vertex. Tangent developables are 

the surfaces built by “extruding” a curve in the three-dimensional space along its tangent. 

Therefore, they are locally flat along the extrusion direction and hence developable.

From our standpoint, of studying surfaces that change shape, the Gaussian curvature 

has a fundamental relevance. Surfaces with same K are called isometric and (as we have 

seen for cylinder and plane) can be transformed to one another keeping the distances 

unchanged (this is the main result of Gauss’ Theorema Egregium10). In general ( just 

10 Gauss 1902.

Fig. 2: A saddle, cylinder and sphere, respectively examples of surfaces with negative, zero and positive 

Gaussian curvatures (KG).

KG < 0 KG = 0 KG > 0
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like what we have seen for the compressed bar) surfaces preferentially undergo some 

isometric shape change when subjected to a load (as we have seen thin bodies are much 

less rigid when bent than stretched). For developable surfaces (KG = 0) such isometric 

transformation is easy to predict because it involves only bending. Instead, for non-devel-

opable surfaces, bending is always coupled to stretching: in this case the transformation 

is not isometric and therefore the shapes that can be acquired will depend strongly on 

the relative amount of bending and stretching energies involved, and buckling events 

(switching from one mode to the other) can appear when these two energy contributions 

have similar magnitude. Therefore, we will describe the shape change of thin bodies in 

terms of both the in-plane strains and the curvature-changes of their mid-surface.

1.2 Fundamentals of spontaneous shape change

1.2.1 Generating forces and deformations: eigenstrain and eigencurvature

Besides external mechanical loading, shape transformations can occur also due to other 

types of interaction of the body’s material with the environment. For example, when we soak 

water beads11 the hydrogel material of which the beads are made absorbs large amounts of 

water, and the beads increase in volume, undergoing large strains (identified by a zero at 

the subscript: Ɛ0, see also fig. 3a). We define this “non-mechanical” strain as the eigenstrain: 

it is the spontaneous or natural strain of a material which is sensitive to changes of the 

environment, such as temperature, light, humidity, electric or magnetic field. This character 

is well conveyed by the german word eigen which means own. The strain that we introduced 

previously is now called elastic strain, to highlight its mechanical origin. When both a me-

chanical and environmental stimuli are applied, for instance if we squeeze the swollen gel 

bead, the elastic strain is the difference between the total strain (this is the “visible” one 

that can be measured as described for the rubber sheet) and the eigenstrain; in other terms, 

the elastic strain is defined with respect to the swollen configuration that acts as a reference.

Even when only eigenstrains are present, residual stresses can develop and therefore 

elastic strains emerge. A typical example (fig. 3b) is a thin plate made of two identical 

layers except for different thermal expansion properties (one expands by Ɛ0 for a given 

temperature increase, the other one does not expand at all). As we could expect intuitively, 

when the temperature increases, the material cannot reach the local eigenstrain value 

because each layer constrains the other one. The expanding layer experiences a residual 

compressive stress while the passive layer a tensional one, being on average zero over 

the thickness.12 As a result, the plate bends in order to fulfill the different expansions. 

11 These are used to irrigate plants over longer time, for instance during short holiday trips.

12 This scenario is not always granted: some eigenstrain distributions can also prevent the plate to possess 

a stress-free shape (on this point, see section 2.3.1).



 An Introduction into the Physics of Self-folding Thin Structures 183

A natural bilayer has been described by Elbaum,13 in the awns of the wild wheat which 

foster the seed dispersal. Here, the bending is caused by differential expansion between 

the two layers that make up each awn due to changes in humidity between night and day.

Clearly, both the artificial and the natural systems can be easily described in terms of 

eigencurvature, that is a natural curvature that develops in the awn in absence of external 

mechanical loading. It becomes now clear that eigenstrain (intended as a local change 

of lengths in the material) is fundamental for shape changing systems: in particular a 

non-uniform distribution of spontaneous expansion in a body (differential eigenstrains) 

as in the bilayer example are among the strategies implemented in many biological 

self-folding systems.

1.2.2 Some strategies to generate controlled eigenstrains and eigencurvatures

Analyzing the microstructure of biological materials can provide enough insight in the 

design strategies that have evolved in Nature to obtain shape changing materials. A 

fitting example for this is wood. When trees grow they produce new wood material. An 

idea of this process can be obtained by looking at the many rings in the cross section 

of a tree’s log: the tree grows in diameter by adding layers of cells to the log. Therefore 

this growth process is one-way: unlike animals where tissues can be reabsorbed or 

13 Elbaum et al. 2007.

Fig. 3: Eigenstrain Ɛ0 and eigencurvature k0 are respectively spontaneous length and curvature changes. (a) 

Example of eigenstrain in a hydrogel: from the initial dry state (Ɛ0= 0) to the final swollen state (Ɛ0>0) a large 

volume increase due to swelling of water takes place. (b) Example of eigencurvature in the awns of the wild 

wheat: each awn is a bilayer made of a hygroscopic (white) and non-expanding (grey) materials. Due to the 

humidity difference between night and day, the awns’ shape changes from straight (𝜅0= 0) to bent (𝜅0> 0). 

Elbaum et al. 2007. 

a b
Ɛ0 = 0 𝜅0 = 0 𝜅0 > 0Ɛ0 > 0
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remodeled, plants lack this ability. This can be problematic because adding more material 

increases the weight that the tree has to sustain. Moreover additional external loading 

can emerge (like a condition of persistent wind). A solution is found through some 

specialized tissues that can expand or contract, in this way counteracting situations of 

unbalanced loads and securing the structural stability of trees. As explained by Fratzl et 

al.14 to understand the mechanism of expansion/contraction generation it is sufficient to 

consider the wood cell walls architecture and composition15 (fig. 4a–c). These cells have 

a prismatic shape with walls made of a swellable matrix reinforced by almost inextensible 

cellulose fibrils spiralling around the cells’ main axis. Therefore swelling is possible only 

perpendicularly to the stiff non-swelling cellulose fibrils. By controlling the cellulose 

orientation (measured by the microfibril angle – MFA) during their development, plant 

cells can generate eigenstrains, and modulate them to tensile or compressive values. Such 

plant tissues are responsible not only for stress generation in trees but also in a variety 

of seed dispersal systems, such as the pine cone (fig. 4d) or the awns of the wild wheat 

(fig. 3b), that function in absence of any metabolic energy source. The energy needed to 

mechanically actuate and perform a shape change is harvested from the environmental 

changes in humidity – this is the reason why these systems are also called hygromorphs.

Another example of biologically developed eigenstrain is found in the seed capsule of a 

family of plants called Aizoaceae (commonly known as iceplants). They are remarkable 

because -unlike most hygromorphs where eigenstrains are typically in the 10% range-, 

their active tissue experiences a 400% eigenstrain as a result of water absorption. The 

origin of such large eigenstrains is found in the peculiar composition and architecture 

of the active tissue, as explained by Harrington16 and colleagues. At a microscopic scale 

it consists of a lignified honeycomb structure with diamond shaped cells whose walls 

are lined by a cellulose rich hygroscopic tissue (fig. 4e). As liquid water comes in contact 

with the tissue, the hygroscopic inner layer swells increasing its volume; the honeycomb 

structure directs this large volume increase in a large expansion along the cells’ short axis. 

Man-made materials are also subjected to eigenstrains. Hydrogels in particular are a 

special class of polymers undergoing large expansion (1000% in volume) upon water 

sorption. Hydrogels have a chemical structure that can be described as a network of long 

chains connected together at points called cross-links. These chains are hydrophilic (water 

liking) therefore they “attract” water molecules when soaked. The degree of expansion 

depends on the density of cross-links: less cross-links bring to higher expansion. Moreover, 

they can be chemically synthesized to modulate the swelling in response to a variety 

of different stimuli (temperature, light, magnetic and electrical fields). Technological 

advances have made possible to fine tune both the stimuli-sensitivity (for instance one 

14 Fratzl/Elbaum/Burgert 2008.

15 Composition refers to the chemically different materials found in the tissue; architecture refers to the 

structure of the tissue at lower scales (microstructure, nanostructure, etc).

16 Harrington et al. 2011.
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can control the temperature at which volume change occurs) and the spatial distribution 

of the cross-links in thin geometries (by lithographic techniques as shown, for example, 

by Klein and Kim,17 see fig. 4f ). For these reasons, hydrogels have been the experimental 

system of choice to investigate the role of eigenstrains distribution onto the folding shape.

17 Klein/Efrati/Sharon 2007; Kim et al. 2012.

Fig. 4: Strategies to control eigenstrains in biological and artificial systems. (a–c) The cellulose microfibril 

angle (MFA) controls the mechanics and swelling of the plant cell wall. Dunlop 2016. (a) Schematic of a sim-

plified cell wall, consisting of a soft swellable matrix reinforced by stiff fibres wrapped at an angle μ around 

the cell. (b) Schematic of how cells with different MFAs will respond to swelling of the soft matrix.  
(c) Tensional and compressive strains and stresses can be generated depending on the MFA. (d) A pine cone, 

an example of actuating biological structures responding to change in environmental humidity based on the 

plant cell wall model. (e) Larger directed expansions are achieved in the active tissue of the iceplant seed 

capsule through a different spatial arrangement of the swelling (pale blue) and non-swelling (red) materials. 
(f ) Schematic of halftone lithography: by changing the dimension of the low swelling black dots with respect 

to the high swelling green material fine spatial control of swelling properties in a hydrogel sheet is possible. 

Kim et al. 2012.
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1.2.3 Minimal triggers for spontaneously morphing systems

From what we have seen in this section, in order to achieve a shape change a self-folding 

system must possess two basic ingredients:

 › ability to deform in response to a non-mechanical stimulus (eigenstrain)

 › non-uniform distribution of eigenstrain across the body

Especially this second point is very relevant, as we will see, because the eigenstrain 

distribution influences which pattern of shape change arises. In reality the choice of 

this pattern or the evolution from one pattern to another is strictly subjected to the so-

called boundary conditions. Mathematically speaking these are additional equations that 

have to be considered when searching for the equilibrium shape of a self-folding body. 

From a more practical perspective, these are physical constraints acting on the body: 

for instance, in the example of the spontaneously bending bilayer, boundary conditions 

describe how the extremities of the bilayer are treated (for example, if an extremity is 

glued to a support, and the other one is free to move along a carriage).

2. Exploring the manifold of thin structures undergoing  
  spontaneous folding

2.1 A classification of self-folding systems based on eigenstrains distribution

To properly distinguish among the various types of biological and artificial self-folding 

systems, we choose to categorize them on the basis of the eigenstrain distribution and 

orientation. Moving along the vertical axis of fig. 5, a first distinction is made between 

systems that behave as monolayer or bilayer systems, that is systems that are respectively 

homogeneous or not across the thickness (first or second row of examples in the fig.). 

From what we have shown in section 1.2.1, this is equivalent to endow the surface with an 

eigenstrain or eigencurvature. A second distinction is made depending on the in-plane 

direction and distribution of the eigenstrain (moving along the horizontal axis): the 

eigenstrain can expand/contract the layer mostly along one direction (and be null on 

the perpendicular one) or all directions (isotropic); they can be uniform in the whole 

layer or be differently distributed in the layer (for instance concentrated at the edge). In 

the following, eigenstrain and eigencurvature will be expressed in their principal frame 

of reference as vectors Ɛ0 =  [ Δ1  Δ2 ] and 𝜅0 = [𝜅1    𝜅2 ] . In this notation, the subscripts 

1, 2 refer to the principal directions of the sheet (both flat and curved), indicated by the 

axes 1, 2 in fig. 5.
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Fig. 5: Different types of self-folding systems triggered by in-plane (horizontal axis) and through-thickness 
(vertical axis) distribution of eigenstrains. Top row, from left to right: monolayer systems characterized by a 

uniaxial, biaxial and edge confined eigenstrains distribution. Bottom row, left to right: bilayer systems charac-

terized by single, double and edge confined eigencurvature (eigencurvature derives from a through-thickness 

distribution of eigenstrains). The principal values of eigenstrains and eigencurvatures are directed along 

the white arrows. The geometry of the system (flat or doubly-curved) as well as the boundary conditions to 

which it is subjected (pale blue material schematizes a soft elastic foundation) have strong influence on the 

folding process.



188 Lorenzo Guiducci, John W. C. Dunlop, Peter Fratzl

2.2 Soft matter with hard skin

In this section we present some examples of shape-changing systems formed by a 

thin and stiff sheet attached to a soft substrate (respectively schematized in fig. 5a – c 

by dark blue and pale blue materials). In all these cases the shape change is due to a 

differential strain between these two portions: this gives rise to a manifold of different 

shapes and patterns.

2.2.1 Shape changes in a sheet subjected to uniaxial confinement

To start off we consider the shape transformation of a thin sheet that is attached to a soft 

substrate. This is a common schematization of many systems that appear at disparate 

length scales, both in biological and artificial systems,18 such as the shape of a polyester 

sheet resting on a liquid or a soft hydrogel (mm scale), or tri-colloidal systems and even 

surfactant-water-air interface in the lungs alveola (nm scale). All these systems start from 

a flat state that subsequently morphs into a wavy (wrinkled) configuration and eventually 

reach a convoluted, folded one. The morphing can be caused by a lateral compression of 

the sheet or, equivalently by a unidirectional expansion of the sheet subjected to a lateral 

confinement: both cases can be described by defining the normalized excess length of 

the sheet (fig. 5a). In mathematical formalism the sheet is subjected to an eigenstrain 

Ɛ0 = [Δ  0] with Δ >0 since the sheet expands with respect to the substrate.19 The pro-

gression of the shape change depends on the magnitude of Δ as we will show hereafter.

Ideally, compressing the sheet by Δ should shorten while keeping it flat. Instead, even 

for very minor compression, it starts wrinkling (fig. 6a). The wrinkling is the onset of a 

first mechanical instability which is in fact very similar to the buckling of an axially loaded 

slender bar: from our experience we know that it is very difficult to shorten the bar, which 

instead will preferentially deform by bending. The shape of the wrinkled sheet is a sine 

wave with a profile length λ0, where λ 0 depends both on the bending rigidity of the sheet 

B and the effective stiffness of the substrate K. This can be readily understand this if we 

first consider the sheet separately from the substrate. If we would compress the sheet 

alone, it would bend acquiring a single arched shape, pretty much like as for the axially 

loaded bar: this is because a single large arch has a smaller curvature than many smaller 

ones. On the other hand, a single arch would cause a large deformation of the substrate, 

since the latter is bonded to the sheet and follows its vertical displacement. Therefore 

the substrate switches to a configuration with many arches. Eventually the actual length 

of the sine profile λ 0 is a tradeoff between these two competing processes.

18 Pocivavsek et al. 2008; Genzer/Groenewold 2006; Brau et al. 2013.

19 With reference to fig. 5a, considering a principal reference system aligned with the sheet sides, Δ is 

the eigenstrain component along the horizontal direction (marked by a white arrow), whereas the 

component along the perpendicular direction is zero. This notation is explained in section 2.1.
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As Δ increases the wrinkled configuration is not stable anymore: this can be observed 

in the plot of fig. 6b, showing the measured amplitudes of the central wrinkle A0 and 

the first flanking one A1 taken from a plastic foil floating on a liquid. When Δ increases

until about one third of the profile length λ 0, the wrinkled profile starts changing and

the center wrinkle amplitude A0 starts increasing linearly at the expense of the flanking 

ones. This bifurcation point is the onset of the wrinkle-to-fold transition. In the limit of 

Fig. 6: Wrinkling and folding in a sheet subjected to uniaxial eigenstrain Δ with respect to an elastic foundation. 
(a) The initial straight state is lost in favor of a periodic wrinkled pattern. (b) Wrinkle-to-fold transition when 

the foundation is a liquid: past a certain threshold, the central fold amplitude A0 grows at the expense of 

flanking wrinkles A1. (c) Wrinkle-to-fold transition when the foundation is a soft solid: flanking wrinkles do not 

disappear and the monolayer acquires a typical periodic profile with alternating deep folds and shallow wrinkles. 

Brau et al. 2013; Pocivavsek et al. 2008.
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larger and larger confinement, the center fold increases and all other wrinkles disappear. 

In reality this is not observed because the fold contacts itself when Δ = λ 0

The reason why the fold appears depends on how the strain energy of the system scales 

with an increasing confinement Δ:20

U~(BK)⅟2 Δ – KΔ3

the first term, with degree one half, is related to the winkling, and, as said, depends on 

both the sheet bending rigidity B and substrate stiffness K; the second term with degree 

three is related to the folded state and depends only on K. When Δ is small the cubic 

term is negligible and the winkling solution is the most stable state. When Δ increases 

the cubic term lowers the total energy, favoring the folded state.

A slightly different folded configuration occurs when the substrate is a soft elastic material 

such as an elastomer (fig. 6c). Again in this case, when Δ is small the wrinkled shape is 

stable.21 Then, at a certain confinement δ2 the wrinkle-to-fold bifurcation is observed. 

In this case though, there are many deeper folds of amplitude A0 flanked by smaller 

wrinkles of amplitude A1 which don’t vanish even for very large Δ. This behavior is due 

to the elastic response of the substrate: whereas in the sheet-fluid system the sheet could 

freely flow on the fluid and the central fold grow at the expense of the other wrinkles, here 

such a horizontal deformation of the substrate has a “cost” in terms of strain energy. As 

a result the folded configuration has a typical period-doubling shape (see fig. 6c) with 

alternating small amplitude wrinkles and large amplitude folds. If even larger confinement 

Δ is applied a period-quadrupling folding occurs: this suggests that a cascade of spatial 

period-doubling bifurcations could happen at high enough confinements (more than 

period-quadruple foldings however are hard to be observed experimentally because the 

sheet can undergo self-contact).

2.2.2 Shape changes in a sheet subjected to biaxial confinement

As an extension of the previous uniaxial strain states we now consider a biaxial compres-

sion or, equivalently a biaxial growth of the sheet. This scenario is a good approximation 

of what happens when our skin ages. Aging triggers biological modifications that make 

the skin superficial layer (epidermis) stiffer, while the internal layer tends to lose water 

causing its shrinking. This results in an excess length of the epidermis: mathematically 

the sheet is subjected to an in-plane eigenstrain Ɛ0 = [Δ1  Δ2 ] with respect to the substrate 

(depicted by two perpendicular arrows in fig. 5b). We know from our daily lives that -from 

the unaesthetical orange peel appearance, to deep wrinkles- skin blemishes can be 

20 Pocivavsek et al. 2008, 915.

21 The amplitude is proportional to the square root of Δ as with a fluid substrate.
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manifold. Moreover this problem has more than a merely aesthetical interest. Indeed 

a similar surface patterns appear in artificial material systems, for example depositing 

a thin metallic film22 onto an elastomer23 and letting the system cool down at room 

temperature, or by surface-modifying of polymers such as poly-dimetilsiloxane (PDMS) 

(see the examples described later).

In this case the buckling analysis has to account for all possible pairs of values Δ1,  Δ2. 

Audoly and Boudaoud24 started studying this problem for values close to the critical25 

threshold value ΔC. They showed that the sinusoidal wrinkled configuration (also called 

cylindrical) of frequency k arising as the first buckled configuration in the monodimen-

sional case is still a solution when the interfacial strain is small (below the critical value). 

For slightly larger eigenstrains Δ three additional possible patterns arise: the so-called, 

undulating, varicose and checkerboard patterns (fig. 7a). The undulating is obtained 

from straight wrinkles by lateral undulations of the crests and valleys. The varicose 

corresponds to a modulation of the amplitude of the straight wrinkles, along its crests 

and valleys. The checkerboard is obtained by superposition of two perpendicular sets 

of straight wrinkles. The hexagonal is obtained by superposition of three sets of straight 

wrinkles, at 2π /3 angles.

These patterns are perturbed configurations of the cylindrical one, with respect to which 

a periodical perturbation of frequency k’ along the longitudinal direction is superposed. 

Putting q = k’/k as the longitudinal wavevector relative to the cylindrical one, Audoly and 

Boudaoud present the stability of these patterns as a function of the two differential strains  

Δ1,  Δ2   and their wavelength. In the phase diagram of fig. 7b each portion of the plane 

is marked with the pattern that is more stable for the corresponding range of values of 

the two differential strains Δ1,  Δ2. In particular they showed that the undulating pattern 

with large wavelength (q = 0) are more stable than the wrinkled state as soon as the 

strain compressing the wrinkling pattern longitudinally is higher than the critical value 

Δ2  > ΔC. The transition from wrinkled to varicose pattern is not observed because it takes 

place at strains that are much larger than for undulating stripes or for the checkerboard 

mode. When the differential strain is equibiaxial (Δ1 = Δ2), the checkerboard pattern is 

the more stable state above the critical thresholds, especially for larger Δ. Remarkably, 

the equibiaxial case close to the initial buckling threshold (Δ1 = Δ2 = ΔC) is a special 

situation where the straight wrinkled state can coexist with all the other patterns. This 

is because all of the patterns (theoretically extrapolated or experimentally reported) can 

be seen as a superposition of straight wrinkles at different angles.

22 Here and throughout the rest of the text the term film is synonym of thin sheet.

23 Bowden et al. 1998.

24 Audoly/Boudaoud 2008a.

25 The critical threshold is the value of Δ1,  Δ2 beyond which the system switches to a buckled state.
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When the differential strain increases (see fig. 7c), the undulating pattern evolves smoothly 

(without a well-defined buckling threshold) towards a developable surface obtained by 

folding a cylindrical shape along sinusoidal ridges (pattern D in fig. 7c). This pattern (de-

rived theoretically) is very close to the so-called herringbone (or zig-zag) pattern observed 

experimentally. In this pattern the spacing between the ridges along the transversal and 

longitudinal direction (with respect to the initial straight wrinkling) are comparable. By 

studying the energy of the developable pattern at very large differential strains, Audoly 

and Boudaoud showed that this configuration is far from the global minimum of energy.26 

26 The global minimum is obtained when the spacing between ridges is much smaller than the wavelength 

of these sinusoidal ridges.

Fig. 7: Complex pattern formation and evolution in a monolayer subjected to increasing biaxial confinement 

resting on an elastic foundation. (a) Cylindrical, undulating and checkerboard patterns. (b) Phase diagram 

of the most stable patterns depending on the extent of eigenstrain along two perpendicular directions. 

Audoly/Boudaoud 2008a. (c) Evolution of pattern in case of an increasing equibiaxial confinement: planar, 

cylindrical, undulating and developable patterns. Audoly/Boudaoud 2008b. (d) Influence of rate of change 

of confinement onto the pattern evolution: slow increase cause “trapping” from hexagonal pattern into 

disordered labyrinthine one; fast increase enable reaching the more stable herringbone pattern. (e) Relative 

strain energy of different patterns at increasing biaxial confinements: lower energies mean more stable 

patterns. Cai et al. 2011.
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This means that experimentally the system is trapped in a non-optimal state (herringbone 

pattern with comparable transversal and longitudinal wrinkling periodicity) although a 

more stable configuration could be possible. This so-called trapping mechanism depends 

on the history of loading of the system: if the differential strain beyond the secondary 

buckling threshold (from straight to undulated wrinkles) is increased slowly, the develop-

able pattern inherits the wavelengths typical of the undulating pattern because this is a 

smooth change; if, instead, the change is fast, the system can reach the global minimum. 

The idea that loading history of the system has significance in the shape selection is 

also crucial in self-folding bilayered systems. Finally, at even larger Δ the developable 

pattern smoothly tends to a Miura-ori folding pattern.27 Again since this is a smooth 

transition trapping is possible.

Trapping in real experimental systems (as can be seen in fig. 7d) has an utmost impor-

tance because it constitutes a way to select different pattern under similar experimental 

conditions. For example, Cai and Hutchinson28 were able to show this in specimens of 

poly-dimethylsiloxane (PDMS) substrates that were treated with a chemical oxidative 

process that cause the stiffening of a thin superficial layer. These PDMS samples were 

then exposed to ethanol vapor: the ethanol would be absorbed first in the thin layer thus 

generating an equi-biaxial differential swelling. Moreover, by controlling the duration of 

exposure and the concentration of ethanol in the vapor, they were also able to control the 

speed and amount of differential swelling. Being able to inspect how the system would 

behave under a controlled equibiaxial differential strain Ɛ0 = [Δ  Δ], they compared the 

pattern formation due to a large increase in Δ, with slow and fast dynamics. With slow 

dynamics the system started from a pure hexagonal pattern, then isolated hexagons would 

coalesce with neighbors producing an extended local groove. Such groove formation 

was also triggering the coalescing of a neighboring pair into another groove that was not 

parallel to the original pair, in order to accommodate the local stress in an equi-biaxial 

manner. The overall result of such a sequence of individual buckling events was a pattern 

that locally resembles a segmented labyrinth, or a herringbone pattern with no global 

orientation (as observed by Huang and Lin29). In contrast, with a fast increase of domains 

of herringbone pattern were developed from the beginning and subsequently refined in 

extremely well-defined and larger domains.

To understand such a behavior, they derived upper bounds for the theoretical strain 

energy at low Δ of different patterns: the straight wrinkled, the checkerboard, hexagonal 

and herringbone. While close to the critical threshold all different patterns have similar 

27 Audoly/Boudaoud 2008c; a Miura-Ori folding pattern is a traditional folding in artistic origami, where 

the creases are zig-zag lines oriented as the crests and valleys of the developable pattern of fig. 7c.

28 Cai et al. 2011.

29 Huang/Hong/Suo 2005; Lin/Yang 2007.
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energies (see fig. 7e), these become more separated at higher levels of differential eigen-

strains. Their predictions clearly show that for higher Δ the more stable (lower energy) 

patterns were the checkerboard (square) and herringbone one followed by the straight 

wrinkled and hexagonal ones. While this result confirms the same conclusions drawn 

by Audoly and Boudaoud, it was striking that the theory could not explain the system’s 

dominant preference for the hexagonal pattern when D was increased slowly. To explain 

this oddity the basic assumptions of the theory were reconsidered. In particular the 

authors questioned the assumption of a perfectly flat film. Indeed before any pattern 

formation, the films would show (even if very minor) an initial curvature. In fact, by 

introducing in the theory an outward curvature of the film, it could be shown that the 

hexagonal buckled mode is the more stable configuration (lower elastic energy minimum) 

in presence of a positive spherical curvature of the film. Moreover the curvature introduces 

a clear asymmetry in the buckling response: this was confirmed by the evidence that the 

hexagonal patterns on PDMS always showed inwardly oriented dimples.30

2.2.3 Shape changes in a curved sheet subjected to equibiaxial confinement

These results show how important the surface curvature is in the selection of a specific 

pattern. Moving on from this point, many researchers focused on the effects of curva-

ture both theoretically31 and experimentally32 when the curved sheet is subjected to an 

homogeneous in-plane eigenstrain Ɛ0 = [Δ  Δ] (see fig. 5c). The main outcome of these 

studies is that the surface curvature acts as an additional parameter to control the pattern 

formation: large changes of the film curvature (at a given level of differential strain) can 

push the system to a different pattern, exactly as does the critical strain far above the 

critical value. From the phase diagram in fig. 8a, it can be seen that the hexagonal pattern 

is stable when the differential strain Δ and/or the radius of curvature R are low. Increasing 

R (relatively to the shell thickness h) or Δ produces a so-called labyrinthine pattern 

with domains of curved ridges and valleys. Intermediate values of these parameters 

produce configurations of stable coexistence of the aforementioned patterns. At a closer 

inspection, these patterns are not trivial. Intuitively we would expect that for a very large 

radius of curvature.33 The film assumes the herringbone pattern observed by Cao and 

Hutchinson instead of the labyrinthine one (see fig. 8a). But the planar periodicity of the 

herringbone pattern is incompatible with a spherical domain. Similarly, the hexagonal 

pattern observed at low radius is not perfect: some dimples have only 5 neighbouring 

dimples, demonstrating the existence of pentagonal topological defects (disclinations) 

as required by Euler’s polyhedral theorem.34

30 A symmetric buckling would equally produce inward or outward dimples; instead the experiments 

showed only inwardly oriented dimples: in fig. 7d the inward dimples have a darker shade of grey.

31 Cao et al. 2008; Li et al. 2011; Stoop et al. 2015.

32 Breid/Crosby 2013.

33 That is in the limit of a flat film.

34 From Euler polyhedral theorem in the sphere there must be 12 dimples with 5 neighbors. 
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The wrinkling at the surface of a drying pea is a perfect system to observe such interplay 

between pattern formation and surface curvature (fig. 8b). They have an almost spherical 

shape and, when drying, the softer inner core shrinks more rapidly than the stiff outer 

shell: also in this case there is a positive differential strain Δ between shell and core. 

Typically, due to the high shell thickness and the high stiffness ratio between shell and core, 

the dimples that are formed are quite large compared to the pea size. Therefore when Δ 

increases past a critical threshold a typical buckyball pattern appears, which shows a clear 

arrangement of hexagonal-pentagonal dimples. At even larger Δ neighboring dimples 

coalesce together forming a groove, in a secondary wrinkle-to-fold bifurcation. In this 

case since the groove length is comparable with the sphere radius, a true labyrinthine 

pattern is unfavored and grooves show a scattered orientation.

2.3 Torn plastic bags and growing leaves: shape changes due to edge growth

In this section we present some examples of systems where the shape change is caused 

by a positive differential strain of the edge with respect to the core of the sheet (see 

fig. 5d– e). As the reader could already understand from the title of this section, this 

scenario has a very broad relevance, since it is applicable to a variety of different systems, 

both biological and artificial.

Fig. 8: Influence of curvature of the monolayer on the selection of buckling pattern. (a) Theoretical phase 

diagram and relative patterns (hexagonal, bistable and labyrinthine) as a function of surface curvature 
(normalized by monolayer thickness: R/h) and in-plane eigenstrains (beyond the onset of buckling: Δ/

ΔC – 1. Points correspond to real experiments on artificial system. Stoop et al. 2015. (b) Pattern formation 

on the skin of drying peas and relative numerical predictions as a function of skin-core modulus ratio and 

confinement. Li et al. 2011.
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2.3.1 Non-uniform in-plane eigenstrain distributions

All the examples introduced until now show that surface curvature, eigenstrains magnitude 

and to a certain extent also speed of deformation are possible means to control the pattern 

of shape change. As we have seen, such patterns consist of out of plane deflections from 

the sheet initial configuration that can be considered large in comparison with the sheet 

thickness, but are small with respect to the sheet size. Another line of research investigates 

large shape changes in finite size sheets through a reasoned distribution of the in-plane 

eigenstrain. This forward problem (given a three-dimensional target shape, find the cor-

responding in-plane eigenstrain distribution) has been dealt with for ideal surfaces (with 

vanishing thickness): the field of map projections provides a number of well-established 

conformal mappings35 of three-dimensional shapes onto flat surfaces (for example it is 

possible to almost completely map a sphere to a flat surface with the exception of a point).

The reverse problem, from a geometrical perspective, is to find the three-dimensional 

shape of a thin body corresponding to a given distribution of in-plane eigenstrains. This 

problem (as realized by Efrati, Sharon and Kupferman36) is not trivial and has been 

solved analytically only under simplifying axisymmetry assumptions.37 A thin body loses 

its intrinsic geometry as a result of a generic growth process. For example, let us assume, 

for simplicity, the thin body is flat: the growth process leads to an in-plane eigenstrain 

distribution. If the elastic plate is capable of satisfying the prescribed metric, then there 

exists a stress-free configuration, which is unique. That is the prescribed metric transforms 

the flat body to a curved one. If this is not possible, a residual in-plane stress will arise in 

the deformed plate, regardless of the assumed shape. Efrati and coauthors called such 

bodies non-Euclidean to highlight their impossibility to obtain a stress-free shape. Here 

non-Euclidean means that their internal geometry (prescribed by the metric) cannot 

be described only in terms of distances between points since such a pure geometrical 

description would overlook the presence of residual stress. In mathematical terms it is 

said that such bodies are not immersible in the three-dimensional Euclidean space, or, 

alternatively, the prescribed metric has no embedding in the Euclidean space.

2.3.2 Edge growth in a flat sheet

To explain such reverse problem, we once again resolve to a hand-held experiment, where 

we take a piece of plastic bag (flat in its resting configuration) and tear it apart (fig. 9a). 

A travelling crack is formed: the material flows perpendicularly to the crack as a result of 

the large extensional stresses. These material deformations close to the newly formed 

edges are not recovered after the load has been removed: the material has deformed 

35 Ivanov/Trubetskov 1995.

36 Efrati/Sharon/Kupferman 2009a; Efrati/Sharon/Kupferman 2009b; Efrati/Sharon/Kupferman 2011; 

Efrati/Sharon/Kupferman 2013.

37 Dias/Hanna/Santangelo 2011.
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plastically. Hence we have prescribed a unidirectional eigenstrain along the edges. To 

be concise let us name this type of eigenstrain distribution as edge growth. The evident 

consequence of this can readily be seen: the edges have now assumed a rippled shape. 

Strikingly similar shapes are also observed in the shape of salad and kale leaves (fig. 9b): 

also in this case the edges grow more than the center of the leaf. The question is then: 

can we predict the edge shape corresponding to a given edge growth profile? Sharon38 

et al. analyzed the shape of such torn plastic sheets and realized that the wrinkles at 

the sheet’s edge are self-similar (or fractal): each bigger wave contains along its profile 

3.2 smaller waves sharing the same amplitude-to-wavelength ratio, with wavenumbers 

according to a sequence:

k, αk, α2k, α3k, …

where α =3.2 and k being the wavenumber of the first largest wave. Measuring the contour 

length of the sheet close to the edge, they could observe a contour excess length (with 

respect to the flat contour length) with a rapid decay moving from edge to center of the 

sheet (fig. 9c) which is mathematically equivalent to an eigenstrain Ɛ0 = [Δ  0] aligned 

with the sheet’s sides (see fig. 5d). That is, each narrow strip parallel to the edge is in-

plane compressed by the flanking one closer to the center. Recalling section 2.2.1, this is 

compatible with a straight wrinkling pattern with wavelength λ (depending on the sheet 

stiffness and thickness). Therefore the cascade of waves is due to the superposition of 

many such wrinkling patterns with increasing wavenumber α ik as one moves closer to 

the edge. Then the question arises: why is the cascade scaling factor about 3.2?

Audoly and Boudaoud39 showed that such period tripling waves are the most stable 

(lowest energy) types of wrinkling that can be achieved in a plate with a growing edge. To 

achieve this conclusion, he first realized that growth profile on the edge prescribes a given 

Gaussian curvature to the plate, on which the stretching energy depends. To minimize the 

elastic energy, the sheet assumes configurations that respect this prescribed curvature. 

In the limit of an infinitely thin plate, two families of embeddings (that is configurations 

respecting the growth profile) are possible, either with a unique wrinkling frequency or a 

cascade of superposed wrinkles. Because of the mathematical form of the elastic energy, 

its solutions must be invariant to a sign change.40 This means that the “self- similarity 

factor α  must map odd integers to odd integers, [leaving] only odd integers (3, 5, etc.) 

as eligible values”.41 Among these, fractal wrinkling patterns with α =3 yields the most 

stable solutions and therefore are chosen.

38 Sharon et al. 2002.

39  Audoly/Boudaoud 2003.

40 The sign invariance mentioned here expresses the equivalence of two wrinkles which are specular with 

respect to the sheet plane.

41 Ibid, 3.
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Fig. 9: Edge rippling induced by edge growth in monolayer systems. (a) When we tear a plastic bag, ripples 

arise at the newly formed edge which are strikingly similar to those observed in kale and salad leaves (b). (c) 

Self-similar edge wrinkles in a torn plastic bag and measured growth strain. Sharon et al. 2002. (d) Influence 

of finite sheet size on the type of edge ripples in monolayers with “blade” geometry. Liang/Mahadevan 2009. 
(e) The blooming of a lily results from edge growth and its doubly curved geometry: in a first stage edge 

growth causes curvature inversion of the petal, that is blooming (1 to 2) and at a later stage ripple formation 
(2 to 3). Liang/Mahadevan 2011.
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2.3.3 Edge growth in narrow flat sheets

Liang and Mahadevan 42 studied a special case of edge growth in a narrow plate, a 

scenario that is more similar to what happens in algal blades and lily leaves.43 Whereas 

in the previous examples of a torn plastic bag or a salad leaf the depth of the growth 

profile was much smaller than the sheet size, in these cases the finite width (w) of the 

plate has an influence on the type of shapes that can be achieved: algal blades can have 

both a saddle shape characterized by a negative Gaussian curvature everywhere or a flat 

configuration with rippled edges. To unravel the process of shape selection in growing 

blades, the authors calculated how bending and stretching energies scale in three possible 

configurations in presence of a large edge growth Δ confined close to the edge. The 

onset of a buckling mode happens when a critical growth ΔC is reached, where bending 

and stretching energies are in the same order of magnitude. Their analysis showed that 

three types of periodic buckling modes can arise depending on the ratio between the 

ripple wavelength 1/k (itself depending on the max value of Δ) and the blade width w. In 

particular (fig. 9d), for kw≪1 a one-dimensional buckling would occur where the blade 

wrinkles along the longitudinal direction and stays flat along the transversal one; for 

kw~1, the blade undergoes a doubly-curved buckling where the longitudinal wrinkling is 

accompanied by transversal curvature of opposite sign (a sequence of saddles); and finally 

an almost flat blade with an edge rippling of large wavenumber k is favored when kw≫1.

2.3.4 Edge growth in curved sheets

The blooming process of a flower has similarities with the morphogenesis of leaves but 

it is worth considering since it sheds light on the role of initial shell curvature in the 

shape change process (fig. 5e). The traditional explanation is that the central midrib is 

responsible for the blooming of the lily: the leafy half of the midrib, growing more than 

the woody half, would generate the required outward bending. By excising the midrib 

from the petals when the lily is in the bud stage, Liang and Mahadevan 44 observed that 

still an almost physiological blooming could occur. Moreover they observed ripples at the 

petal edges typical of edge growth, both in the bud and bloomed state. These evidences 

lead them to postulate an blooming mechanism driven by edge growth. In accordance 

to their measurements, they considered an edge growth Δ reaching farther towards the 

center of the petal (differently from the previous case of the “blade” leaves). Moreover, 

natural curved petals have a positive Gaussian curvature with a weak longitudinal curvature 

and strong lateral one, their ratio being m = 𝜅 x0/𝜅y0 ∊ [0,1]. This is a major departure 

from previous examples of edge growth in flat systems: as we have seen in section 1.1.5, 

in a surface with non-zero Gaussian curvature bending and stretching are coupled. As 

the growth strain increases from zero (fig. 9e), the shell unfolds slowly decreasing both 

42 Liang/Mahadevan 2009.

43 Since only the shape of the plate changes, we still refer to an eigenstrain distribution as in fig. 5d.

44 Liang/Mahadevan 2011.
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curvatures. Past a certain critical value, the lower longitudinal curvature reverses, that is, 

the petal blooms. The theory shows that for the typical petal shape where 𝜅 x0 is low (that 

is m≪1), the curvature reversal is not sudden and the petal opens smoothly. Although 

no real buckling occurs (the blooming happens smoothly), the critical value has still a 

mechanical significance: it separates the stretching dominated and bending dominated 

regimes. Indeed after that value is passed, pure bending deformations in the form of 

edge-localized ripples arise.

 

2.4 Systems with spontaneous curvature

In this section we will give an overview of thin bodies that change shape as a result of a 

differential expansion across the thickness: this situation is equivalent to consider them 

as simple surfaces with a given natural (or eigen-) curvature and is schematized in the 

cases of fig. 5f–j. 

2.4.1 Developable sheets with a single eigencurvature

In the most simple case, we consider a sheet which has at least one vanishing principal 

curvature, that is the sheet has a developable shape (as in fig. 5f where the sheet is 

flat). If an eigencurvature is prescribed, the sheet simply fulfills it through a bending 

deformation. This is the case, for instance, of the wild wheat awns (fig. 3b) and the 

pine cone in (fig. 4d) where the eigencurvature is caused by a differential hygroscopic 

expansion through the thickness. We will not pause longer on this class of morphing 

since no other shape changes occur when the eigencurvature increases. Indeed, since 

the sheet is developable, bending and stretching modes are decoupled: therefore a larger 

eigencurvature will only result in larger bending of the sheet.

2.4.2 Sheets with a non-developable initial or target shape 45

The situation gets more complicated if either the initial shape or target shape are not 

developable (see fig. 5g–i). A typical example of the first type (non-developable initial 

shape, fig. 5i) is the manifold of shapes that cells can acquire (from spherical to elongated 

to biconcave shape typical of red blood cells as in fig. 9a). Cells’ membranes are vesicles 

made of a bilayer of free flowing lipid molecules. This makes them quite similar to soap 

bubbles. On the other hand, the two monolayers do not exchange lipid molecules and 

therefore area differences between them can give rise to spontaneous curvature. These 

two aspects influence the kind of shape to be acquired. Firstly the surface tension which 

(similarly to soap bubbles) tends to minimize the membrane area for a given volume: this 

45 The target shape is the shape that is obtained (if possible) by fulfilling both the eigenstrain and 

eigencurvature. For example, a non-developable target shape is the saddle, corresponding to 

prescription of equal and opposite principal eigencurvatures to an initially flat sheet.
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drives towards spheres. The second is the spontaneous curvature: the larger the sponta-

neous curvature is, the more the vesicle will tend to satisfy it. Therefore surface tension 

and spontaneous curvature lead in general to contrasting shapes. Typically, spheres tend 

to buckle into prolate (elongated) and oblate (discoid) ellipsoids: from these shapes 

Helfrich,46 Seifert and Lipowsky 47 together with Svetina and Zeks 48 studied the types of 

possible evolutions as an increasing spontaneous curvature is ascribed. The shapes that 

were found could be placed in a geometric phase diagram with axes v relative volume 

and c0 relative spontaneous curvature (with respect to a sphere of same area). Already 

fixing a value of c0= 0 one can retrieve many shapes that are observed in real cells: starting 

from a sphere (v =1) as the internal volume is decreased, prolate ellipsoids transition to 

dumbell shapes. Than a discontinuous transition leads to biconcave symmetric shapes 

similar to those observed in the red blood cells. At even smaller volumes, simply concave 

shapes (like stomatocytes) are the most stable. If one allows spontaneous curvatures to 

range from negative to positive values, even more complex features can be explained. In 

particular, prolate shapes dominate for c0>2. At high values of c0 symmetric dumbbell 

configurations become unstable and pear-shaped, asymmetric ones appear. Approaching 

the limit line Lpear (the curved solid line at the top of fig. 10a) the dumbbells obtain narrow 

necks, which are loci of high and equal principal curvatures with opposite signs: past 

this limit line the neck collapses and the vesicle undergoes a so called budding (the 

smaller vesicle is ejected from the bigger one). At negative spontaneous curvatures 

instead oblate shapes dominate and can even lead to the inclusion of spherical cavities 

in the vesicle for large negative c0 values. A remarkable transition is observed for oblate 

vesicles with slightly positive c0 that decrease in volume: the vesicle self-intersects (this 

happens crossing the lines SIob, SIsto from right to left) and acquires a toroidal shape.

46 Helfrich 1973.

47 Seifert/Lipowsky 1990; Seifert/Berndl/Lipowsky 1991.

48 Svetina/Zeks 1983; Svetina/Zeks 1989.
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Fig. 10: Shape changes in systems endowed with a spontaneous curvature. (a) Phase diagram of cell shapes. 

Depending on the cell volume v and its spontaneous curvature c0 a variety of shape changes is possible: 

prolate, oblate, concave, biconcave (like the red blood cells), toroidal cell shapes and even cell budding. 

Seifert/Berndl/Lipowsky 1991. (b) Snapping closure of the Venus flytrap leaves is actively triggered by the 

plant (slow decrease of Gaussian curvature KG) but the high speed of the motion (fast increase of KG) is due 

to its doubly curved geometry (solid line, theoretical model; markers, experimental measurements). Forterre 

et al. 2005. (c) Chiral opening of the Bauhinia Variegata seed pods results from a competition between 

stretching and bending dominated behaviors, that eventually depend on the geometry of the pods (its width 

w) and non-developable target metric/curvature defined by the pod valves’ material structure. The pitch (p) 

and radius ( r ) of the pod valve mark two possible shapes: a twisted helix or a ribbon (solid line, theoretical 

model; markers, experimental measurements). Armon et al. 2011.
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Another example of thin shell with non-developable initial shape (fig. 5i) is the plant 

known as Venus flytrap. This plant has typical doubly curved leaves that are convex in 

the open state and concave in the closed state. The morphing between these two states 

happens through a fast snap that is used to trap a prey. Measuring the leaf Gaussian 

curvature KG as a function of time. Forterre and Mahadevan 49 realized that it was not 

constant during the closure (see fig. 10b): it would first decrease slowly (when the leaf 

is still convex) and then increase very rapidly (when the leaf becomes concave). As we 

have seen for the blooming lily, because the leaf is doubly-curved, the curvature inversion 

(convex-to-concave) can only happen through an intermediate state in which the leaf is 

stretched. To achieve this, the internal (turgor) pressure of the cells on the external side 

of the leaf is actively increased until the leaf is close to a critical curvature value. In this 

stage elastic energy is stored in the stretched leaf. As the turgor pressure is generated 

by a slower biochemical process KG decreases slowly. When a prey stimulates the plant 

“sensors” (cilia on the leaf inner face) only an additional small increase in turgor pressure 

is needed: the critical threshold is passed, the elastic energy released and the leaf switches 

to the more stable concave configuration. Moreover, since the Gaussian curvature KG 

is tipically higher than in the lily, the curvature inversion happens rapidly through a 

snap-through buckling. Therefore the overall mechanism ensures fast actuation, which 

is crucial for its prey-catching effectiveness.

The second scenario (non-developable target shape, fig. 5h) is well depicted by the seed 

pods of the plant Bauhinia variegatae: when the pod dries the two valves split open with 

a spiralling movement. Cues to understand this movement can be found already in 

the structure of the valves. As observed by Armon,50 each valve consist of two fibrous 

layers oriented roughly at ± 45° with respect to the pod’s longitudinal axis: therefore 

(recalling how wood actuation works, see section 1.2.2) the two layers shrink uniaxially 

at perpendicular directions. While each individual layer would stay flat, when they are 

attached together they develop opposite principal curvatures along the ± 45° orientation 

of the fibers. With reference to fig. 5h where the principal directions are along the sheet 

sides, the valve behaves as a sheet with target metric 51 a0 =  [0   0] (where 0 means that

no expansion/contraction is allowed due to the presence of fibers at perpendicular 

directions) and a target double curvature b0 =  [𝜅0       – 𝜅0]. But such a case is special: the

valve locally assumes a saddle-like configuration to satisfy the target curvature with 

a negative Gaussian curvature, the target metric requires null in-plane strains of the 

sheet; that is there is a metric incompatibility, where target metric and target curvature 

cannot be satisfied simultaneously. Therefore the strip will always have a residual stress.  

49 Forterre et al. 2005.

50 Armon et al. 2011.

51 Target metric and target curvature are equivalent to eigenstrain and eigencurvature. The notation used 

here was given in section 2.1.
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Such metric incompatibility is at the base of a strange behavior: despite having the same 

intrinsic curvature it was observed that wide strips adopt a ribbon shape (that is a cylin-

drical envelope shape) whereas narrow strips show a helical one (where the strip twists 

around its straight centerline). This can be deduced by the plot of fig. 10c where the 

experimentally measured pitch (p) is plotted versus radius (r) for many biological and 

artificial samples.Which configuration will be acquired depends on the minimum of the 

total energy. From energy scaling arguments Armon showed that when the strip width w 

is large the system is stretching-dominated; this implies that to minimize the total energy 

one has to minimize the stretching energy, where the system satisfies the target metric 

a = a0 . Under this constraint the sheet assumes a curvature different from the target b ≠ b0, 

approximating it in one of the two principal directions while frustrating it (zeroing it) in 

the other: b  =  [𝜅0     0]. This corresponds to the ribbon shape. Conversely, when the strip 

is narrow the sheet is bending dominated, and the energy is minimized for b = b0. Under 

this constraint, a has to approximate a0. This corresponds to the helical configuration with 

twisted straight axis: at the midline the stretching energy is zero, but it increases with w. 

The switch from one regime to the other happens at a critical width wcr  ≈ 2.5  t/𝜅0 where 

stretching and bending terms are comparable.

A similar case of sheets with a non-developable target shape, is observed in rectangular 

polymer-metal bilayers activated by an electrical-driven uniform contraction of the polymer 

layer (fig. 11a). Remarkably Alben52 observed that bilayers with a large length-to-width 

(aspect) ratio bend preferentially keeping the short side straight. Because the polymer 

contracts isotropically, the bilayer assumes a target spherical curvature b0 =  [𝜅0     𝜅0] 

(fig. 5g). As we know, such a double curvature implies in-plane stretching, which is an 

unfavorable mode of deformation. When the polymer contracts, the bilayer first assumes 

a shallow spherical shape; afterwards it frustrates one of the two curvatures and bends 

along the other, assuming a cylindrical rolled shape. So why the short-side rolling 53 

would be always preferred? Alben realized that the bilayer would not bend into a perfect 

cylinder, but would preserve narrow regions of double-curvature close to the rolled edges. 

Since these regions are closer to the target curvature, they lowered the elastic energy of 

the system. Therefore the system prefers to roll on the short-sides thus maximizing the 

regions of double-curvature to the long sides.

2.4.3 Sheets with a double eigencurvature confined at the edges

This section on bilayers deals with the morphing of edge activated bilayers (fig. 5j) where a 

spontaneous double curvature b0 =  [𝜅0     𝜅0] appears at the edges. In a set of experiments 

on swelling polymer bilayers of variable rectangular shape, Stoychev54 observed a variety of 

52 Alben/Balakrisnan/Smela 2011.

53 In short-side rolling the short side stays flat and the long ones bends.

54 Stoychev et al. 2012.
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rolling scenarios (fig. 11b): long side rolling in case of large aspect ratio bilayers; diagonal 

and all-side rolling in case of aspect ratios close to 1. Strikingly enough, short side rolling 

was not observed at all: Stoychev’s was in open contradiction with the experiments of 

Alben. The main reason for the different behavior is due to the different activation. The 

polymer bilayers synthesized by Stoychev showed a swelling (active) layer attached to 

the substrate and a passive (non-swelling) layer on top. Since the active layer is confined 

between the substrate and the passive layer, water can diffuse in it only through the lateral 

faces (edges), and consequently swelling will occur first close to the edge and then reach 

more internal portions of the bilayer with time. Because swelling is confined to the edges, 

the bilayer does not transit through the shallow spherical shape. Therefore rolling starts 

at the corners first (where the diffusion depth is maximum) creating conical shapes; 

then two scenarios are possible. Long-side rolling is energetically favored for high aspect 

ratio because the costly in-plane stresses are relaxed (by bending) in a larger portion 

(the long edge). When instead the aspect ratio of the bilayer is about one, the bilayer 

can progress towards diagonal rolling (if rolling was initiated at two opposite corners) 

or all-side rolling (if it started at adjacent ones).

In a subsequent paper, Stoychev55 investigated the folding of polymer bilayers with more 

general shapes, such as ellipses or star shapes with a round contour (fig. 11c). In the 

early stages of swelling Stoychev observed the emergence of partially rolled ripples at 

the rounded edges, bestowing them with a characteristic “beer cap” contour. Moreover 

the number of ripples would decrease as the diffusion front travels deeper towards the 

center. Such edge rippling is in agreement with the edge growth in single sheets but, 

since the sheet is a bilayer, the edges preferentially bend in one out-of-plane direction, 

that is, the expected edge rippling will not be symmetric. At the same time it contradicts 

the formation of edge tubes observed in rectangular bilayers. In reality both processes 

occur, although at different time scales: the initial ripples would fuse together when 

the angle between them exceeds 130° (this happens always for edges that are not too 

convex) forming the familiar tubular edge. Once long rolls are formed, they make the 

bilayer more rigid. As a result, after the edge tube formation bilayers can only fold over 

the lines connecting weak points between tubular edges. These movements resemble 

the folding operations in artistic origami, in which a flat sheet of paper is folded along 

specific lines to obtain a three-dimensional figure. It is remarkable that such a simple 

system characterized by isotropic mechanical and swelling properties undergoes complex 

multi-step actuation: again, the eventual folded shape depends from the previous stages 

acquired during the progression of the morphing process.

55 Stoychev et al. 2013.
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Fig. 11: Shape selection and evolution in bilayer systems with a spontaneous curvature subjected to edge 

effects. (a) Short side rolling is the preferred deformation mode in narrow bilayer strips in case of double 

eigencurvature: in this way the long edges maximize the extent of doubly curved edge portions. Alben/

Balakrisnan/Smela 2011. (b) Scheme of bilayer composition (top), edge activation Δ (colored square) and 

phase diagram of rolling modes when the eigencurvature is activated at the edges first: in this case long side 

rolling is preferred because a doubly curved state of the edges is prevented from the initial adhesion to a 

substrate. Stoychev et al. 2012. (c) Multistep asymmetric ripple formation and flap folding in swelling bilayers 

with complex star shapes: ripples form at the edges and (depending on their incident angles) fuse to rolls. 

When the edge is rolled the star arms are stiffened leaving only origami-like foldings as possible deformation. 

Stoychev et al. 2013.
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3

.5 Self-folding origami

As a concluding remark we would like to at least mention a separate group of self-folding 

systems which is recently gaining more and more attention: the artificial self-folding 

origami. These systems are designed to experience extremely large eigenstrains and 

eigencurvatures at very narrow locations in the sheet: in fact a typical crease pattern 

appears, whereas the rest of the sheet is practically undeformed. This aspect makes 

such systems extremely convenient to be studied because their deformation depends 

only on the extent and time order of rigid body rotations at the creases. Bound to this 

is their success in robotic applications: to give an example, in a recent paper Felton56 

demonstrated a prototype of robot that is able to fold itself from a flat creased plate, 

hold its own weight and even walk.

. Conclusion

Although the present work is far from being exhaustive, we hope we have shed light on 

the underlying mechanisms that govern spontaneous shape change in thin systems. 

Despite the governing equations of plates subjected to eigenstrain being known since 

one century57, this branch of research is still quite active. This is due, in our opinion, 

to three main factors. First of all, these equations are scaleless: as we have seen in our 

examples many morphing processes could be explained regardless of their actual size, and 

therefore they can be applied to disparate systems. Second, the variety of patterns that 

can be predicted derives from the intrinsic nonlinearity of the elastic strain formulation58: 

this makes the theory appealing to explain experimental observations in which little is 

known about the material properties (due to difficulties bound to the characterization 

methods or samples accessibility/availability). And third, especially relevant for theo-

retical research and simulation, is that there is a virtually infinite panorama of possible 

combinations of eigenstrains/eigencurvatures distributions, plate shapes and boundary 

conditions. In this perspective, the present paper is especially useful: presenting the 

folding of many different thin structures under the unifying concept of eigenstrain (and 

as consequence thereof ), it enables to easily locate where research efforts have been 

focused until now. As a consequence, the paper calls for an exploration of less explored 

eigenstrain distributions: in turn, this will foster a broader and deeper understanding of 

self-folding systems and lead to new exciting engineering applications.

56 Felton et al. 2014.

57 Föppl 1907; von Kármán 1910.

58 The reader can verify that in all the examples the plate material has always been considered linear elastic.
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Folding of Graphene and Other 

Two-dimensional Materials

1. Introduction

1.1 Folding 

The concept of the fold, from a physical standpoint, has been a subject of investigation, 

spanning from folding of proteins1 and synthetic polymers2 to packaging engineering 3. 

Folding of fabrics and thin sheets of material has played an important part in advances 

made in tool production (folding of solar panels, for example, is crucial for efficiency in 

space utilization aboard satellites). 

Folding allows for the transformation of a two-dimensional (2D) material into a three-di-

mensional (3D) material that exhibits a more complex geometry. The importance of 

folding can be observed in nature from the structure of plant leaves and animal tissues 

to protein folding; it is the most important feature of their functionality. 

Nature takes a bottom-up approach to constructing functional foldable components, 

such as plant leaves and animal tissues, by assembling together smaller functional units, 

thereby giving rise to progressively more complex systems. Against this backdrop, the 

use of atomically thin sheets such as graphene, which are able to fold themselves into 

various geometries, is clearly interesting. 

1 Dill/McCallum 2012.

2 Shu et al. 2001; Zhuang et al. 2008; Schmidt et al. 2011.

3 Fei/Debnath 2013.
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Before proceeding to discuss folding at nanoscale levels, let us first address folding and 

bending of materials at macroscale levels. Folding and bending are natural processes 

present, for example, in plant growth. At the macroscale level, in which the thickness 

of a sheet of material is greater than a micrometer, high enough strain across the bulk 

results in bending and folding. 

In nature, forces, which cause bending or folding, could result from differential growth 

imposed by various external factors, such as changes in humidity or thermal expansions.4 

Differential growth can occur when layers have different mechanical properties, leading 

to differential stress experienced at each layer, a differentiation that results in bending 

and consequently folding. 

Furthermore, folding and self-folding of materials could be utilized towards nanoactuation, 

stimuli responsive folding, and wrapping. On the nanoscale, e.g., in graphene (fig. 1), 

where the thickness of a sheet of material is on the order of an atomic or molecular 

diameter, the folding is possible with the tip of a scanning force microscope (SFM).5 

a b

Fig. 1: Scanning Force Microscopy (SFM) height images display the topography of single graphene layers on 

a silicon oxide (SiO2) surface before (a) and after (b) manipulation with the SFM. Higher regions appear 

brighter; a white arrow indicates the path the SFM probe was moved during manipulation; the dotted line 

shows the graphene edge after folding.

Also a variation of the environmental conditions and chemical patterning 6 may be em-

ployed. The possibility of nanoscale folding in materials promises the introduction of 

novel properties into matter as well as new applications for resulting products. 

4 Harrington et al. 2011.

5 Eilers/Rabe 2009.

6 By chemical patterning we mean the controlled variation of the chemistry within a single sheet of 

graphene or graphene oxide.
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In the following, section 1.2 is devoted to describing properties of graphene and graphene 

oxide. Section 1.3 then continues with an overview of recent studies related to their 

folding. In section 2 we describe folding of 2D nanoscale sheets and the effects of defect 

lines on possible bending and folding. Section 3 explains the impact of folding on the 

electronic properties of graphene. Section 4 presents experiments and current research 

on folding of graphene and graphene oxides, focusing on their possible applications for 

nanotechnology, especially in nanopackaging.

1.2 Graphene and graphene oxide

Graphene is a single-atom thick sheet of carbon atoms arranged in a two-dimensional 

network of ring structures (a honeycomb lattice).7 Andre Geim et al. were the first to 

isolate graphene through exfoliation of a naturally occurring graphite crystal using com-

mon adhesive tapes.8 Subsequent studies demonstrated graphene has many promising 

properties such as high electrical conductivity at room temperature 9 and high thermal 

conductivity,10 and on the same time high transparency11 moreover, it exhibits a low 

bending stiffness,12 and nevertheless a very high amount of force (per unit area) is 

required for stretching (also known as high Young’s modulus).13 

In addition, graphene has been proven to be impermeable to small molecules.14 This 

impermeability is attributed to its dense delocalized cloud of electrons, effectively block-

ing the ring structure with a repelling field.15 However, as with any other crystalline 

structure, defects and incomplete segments may exist in random locations throughout 

the graphene sheet. 

Simulation studies and microscopic methods have already demonstrated that graphene, 

as a 2D sheet of atomic carbon cores, can undergo 3D deformations to minimize its 

energy.16 This was attributed to structural defects.17 Structural defects thus become a 

crucial element for 3D deformations on the nanoscale. 

7 Novoselov et al. 2004; Geim/Novoselov 2007; Meyer et al. 2007.

8 Novoselov et al. 2004; Wissler 2006.

9 Le/Woods 2012.

10 Calizo et al. 2008.

11 Nair et al. 2008; Cai et al. 2009.

12 See footnote 8.

13 Lee et al. 2008; Castro Neto et al. 2009; Le/Woods 2012. 

14 Bunch et al. 2008; Lange et al. 2011; Li et al. 2013.

15 Sreeprasad/Berry 2013.

16 Roy et al. 1998; Zhang et al. 2010; Wang et al. 2013; Zhang/Li/Gao 2014.

17 Zhang et al. 2010.
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Consequently the discovery of folds and wrinkles in graphene (2D to 3D transformation) 

has attracted much interest for their possible use in various applications, involving 

either graphene itself or one of its most important chemical precursors for its chemical 

synthesis, graphene oxide (GO).

Graphene oxide is a highly oxidized version of graphene.18 It was initially produced by 

Benjamin Brodie in 1859, while trying to measure the atomic weight of graphite.19 The 

two substances differ in that graphene is an electron conductor, while graphene oxide 

is an insulator. This is attributed to defects and structural disruptions caused by the 

presence of oxygen containing groups within GO.20 

Researchers favor it for its potential for chemical modification; moreover, GO is easily 

processed in large quantities, because it can be synthesized by oxidization of graphite 

crystals.21 Graphene oxide is highly dispersible. It forms a suspended mixture – colloidal 

suspension – in polar solvents such as water, due to the presence of oxygen containing 

groups. A colloidal suspension of graphene oxide was shown to be a key requirement 

in the transformation of the GO sheets from 2D to 3D structures. In addition, colloidal 

suspension of GO is an efficient and up-scalable (large scale production) way for the 

chemical reduction of GO.22 

The self-assembly of graphene oxide sheets around nanomaterials has recently been 

investigated; it was found to be governed for the most part by electrostatic interactions.23 

Graphene oxide has its own spectrum of applications as in super capacitors,24 membrane 

technology,25 batteries,26 and sensors27 or as a part of composite materials.28

1.3 Folded graphene

Folded graphene exhibits further interesting properties, such as alteration of electron 

mobility (conductivity) at folded regions.29 The folding of graphene sheets has been 

18 Hofmann/Holst 1939.

19 Brodie 1859.

20 Dikin et al. 2007; Dreyer et al. 2010.

21 Hummers/Offeman 1958; Chen et al. 2013.

22 Lee et al. 2010; Zhou 2011.

23 Cassagneau/Fendler 1999; Yang et al. 2010; Zhu/Chen/Liu 2011.

24 Stoller et al. 2008; Chen et al. 2010.

25 Dreyer et al. 2010; Li et al. 2013; Joshi et al. 2014.

26 Tao et al. 2011; Wang et al. 2012.

27 Cheng-Long et al. 2011; Borini et al. 2013.

28 Wu et al. 2015.

29 Prada/San-Jose/Brey 2010.
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observed to result in the formation of graphene rolls or nanotubes. Moreover, graphene 

and graphene oxide have each been the subject of many studies regarding their self-trans-

formation from 2D to 3D. Examples of such studies can be found in Nano-origami,30 

Kirigami,31 biological applications32 and even wrapping of bacteria.33 As a form of folded 

graphene, carbon nanotubes have been demonstrated useful in fast water transport at 

nanoscale levels.34 

In order to transform graphene into desired geometries relevant to new applications, many 

methods have been introduced for shaping or patterning.35 However, some exciting new 

applications, such as nanocages devised for storage purposes, have only been realized in 

theoretical simulations.36 The main limitation in experimentally realizing them appears to 

be a lack of control at the nanoscale, while full control over the different forces operating 

at the nanoscale is required in order to achieve ease of transformation from 2D into a 

stable 3D configuration.37

2. Mechanics of folding in graphene 

In section 2.1 we describe the folding mechanism of atomically thin graphene sheets in 

comparison with thick multilayered materials. In section 2.2 we follow with a discussion 

of the influence of structural defects on folding and present related studies.

2.1 Folding in 2D nanoscale sheets

One may consider folding as an ultimate form of bending where a sheet of material 

overlaps but does not intersect itself while it remains in a stable state. To understand 

folding at the nanoscale, bending must first be defined and understood. Recent research 

has shown that the process of bending in single-atom thick or multilayered graphene 

sheets can be modeled using finite deformation beam theory.38 This suggests bending 

of a multilayered thick sheet of graphene is not considerably different from that of a 

sheet of paper. 

30 Patra/Wang /Král 2009.

31 Blees et al. 2015.

32 Chung et al. 2013; Kostarelos/Novoselov 2014.

33 Liu et al. 2011; Akhavan/Ghaderi/Esfandiar 2011; Mohanty et al. 2011.

34 Ma et al. 2015.

35 Feng et al. 2012; Wang et al. 2013; Chen et al. 2014.

36 Leenaerts/Partoens/Peeters 2008; Zhang/Zeng/Wang 2013.

37 Patra/Wang /Král 2009; Talapin et al. 2007.

38 Tarsicio/Cristian/Augusto 2002; Xianhong et al. 2013.
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As a simple example, cylindrical bending along a given longitudinal direction in a sheet 

of graphene is conceptually the main process responsible for the formation of single wall 

carbon nanotubes. It is similar to the rolling of a sheet of paper. Therefore, the resistance 

of a material to bend – that is, its bending modulus – for graphene would be crucial for 

understanding and utilizing bending mechanics.39 

Empirical potentials 40 and ab initio calculations 41 have been previously used to predict 

the bending modulus of graphene. Calculations of the bending stiffness of graphene 

are not simple, since the thickness of a single-layer graphene, which is determined by 

quantum mechanical methods, cannot be defined in the same as on the macroscopic 

scale. Introducing bending stiffness narrows further the analogy with a sheet of paper. 

A bending modulus can be introduced, assuming graphene to be a homogeneous sheet 

with a certain thickness. Yet introducing a bending modulus is rather a mathematical 

trick and does not imply graphene to be a thin elastic plate, since the bending modulus 

for an elastic thin plate depends on cube of thickness (that is to the third power).42 

According to Kirchhoff-Love theory of plates, the strain and stress along the bulk of a 

thin homogeneous elastic plate varies linearly with thickness. Lu Qiang et al.43 used a 

first-generation Brenner potential 44 to derive a simple analytical form for the bending 

modulus of single-atom thick graphene. The value of the bending stiffness was found to 

be 0.133 nN nm, while ab initio calculations have shown it to be 0.238 nN nm.45 

It is clear then that values obtained through ab initio methods predict a stiffer graphene. 

Furthermore, this suggests that the empirical model does not explain the bending stiffness 

of the single-atom thick graphene sheet. Qiang et al. derived a formula for the bending 

stiffness of single-atom thick graphene based on an empirical potential for solid-state 

carbon atoms. It considers the bending stiffness of graphene not only being dependent 

on bond angle effects but also on the out-of-plane twisting angle between carbon-carbon 

bonds, known as torsion angles or dihedral angles (see fig. 2).46 They calculated a bending 

stiffness of 0.225 nN nm, very close to the ab initio calculations. The dihedral angle effect 

39 Qiang/Marino/Rui 2009.

40 Tersoff 1988; Tu/Ou-Yang 2002; Marino/Belytschko 2004; Huang/Wu/Hwang 2006.

41 Sánchez-Portal et al. 1999; Kudin/Scuseria/Yakobson 2001.

42 Timoshenko/Woinowsky 1987.

43 Qiang/Marino/Rui 2009.

44 This model is a function for calculating the potential energy of covalent bonds and the interatomic force. 

The total potential energy of a system is the sum of nearest-neighbor pair interactions which depend not 

only on the distance between atoms but also on their local atomic environment.

45 Kudin/Scuseria/Yakobson 2001.

46 Qiang/Marino/Rui 2009.
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calls for further studies involving bending energies of graphene, as its contribution to 

bending stiffness of single-atom thick graphene is significant.

a b

Fig. 2: (a) Graphene sheet bent to an angle α. Orange circle denotes area with bent segment, as detailed in 
(b). (b) Bent graphene honeycomb structure displaying the carbon-carbon bonds. Each dihedral angle θ (out 

of plane twisting of C-C bonds) is defined by three bonds (4 carbon atoms) connecting atoms (red lines). 

The dihedral angle determines the bending. Two neighboring carbon-carbon bond angles are denoted by Φ 

and Ψ, given by 3 carbon atoms, which define each plane (purple and green, respectively).

In the case of single-atom thick 2D sheets, such as graphene and to a good approximation 

also single layer graphene oxide, an external force can facilitate the bending process.47 

Researchers have shown that the self-folding of a single-layer graphene sheet can be 

modeled using similar considerations for calculating load-carrying and deflection char-

acteristics of beams (deformation beam theory).48 

Using beam theory, it was possible to predict the shape and the critical length of self-fold-

ing in graphene. Moreover, molecular dynamics (MD) confirmed this theoretical model.49 

A critical length is required for the process of folding in graphene to be autonomous. To 

visualize such a critical length, let us first define what we mean by a fold in a single-atom 

thick sheet of graphene. 

47 Chen et al. 2014; Guo et al. 2011.

48 Tarsicio/Cristian/Augusto 2002; Xianhong et al. 2013.

49 Molecular dynamics is a simulation method usually carried out to simulate physical movements of 

atoms and molecules governed by various forces such as Van der Waals forces or Coulombs forces.
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At its simplest, a graphene fold is defi ned to be two overlapping sheets of graphene with 

an arc bending out-of-plane between them (fi g. 3a). 

a

c

b

d

Fig. 3: Conceptual visualizations of (a) profi le of a hairpin folded graphene sheet with its denoted regions, 

where d is the bilayer distance, L0 and L are the lengths of the fl at and half arc (hairpin) regions, respectively. 
(b) Schematics of a folding graphene sheet with a specifi c folding angle α. (c) AA stacking of the graphene 

sheets. (d) AB stacking of the graphene sheets.

The graphene fold involves two fl at regions with an arched region in between. Flat regions 

can adhere to each other due to van der Waals interactions forces within an interlayer 

distance of d. These forces are weak attractive forces between two polarizable entities 

that do not stem from chemical bonding. The arched region is due to the graphene 

carbon-carbon bonding fl exural hindrance. 

Consequently, the formation of arched regions requires a certain amount of energy. For 

a self-folding process to take place, it is important that the adhesion energy between the 

fl at overlapping regions – Eadhesion – is greater than the bending energy  – Ebending. Therefore, 

the length of the overlapping graphene sheet (fi g. 3a) directly infl uences Eadhesion. 

There exists a minimum length of the overlapping graphene segment below which Eadhesion 

< Ebending, consequently favoring unfolding. 
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To further quantify the total energy required for self-folding the entire length of the fold 

is needed. The entire length of the fold is:

Lfold = 2 (L0 + L)

where L0 and L stand for the length of the flat region and the length of the half arc region, 

respectively (see fig. 3a). Meng Xianhong et al. calculate the total energy for folded 

graphene as follows:

Efold = Ebending + Eadhesion 

where Eadhesion = –γL0, with γ and L0 standing for the binding energy per unit area of

graphene and the length of the flat region, respectively. For self-folding to be possible 

Efold must be negative. This can only happen when the overlapping length, L0, is large 

enough and consequently Eadhesion is higher in absolute value.50 For any interlayer dis-

tance, d, between overlapping flat regions, Efold can be calculated with respect to L, the 

half-length of the arched region. Therefore, the self-folding energy can be evaluated for 

different sheet geometries by:

(1) Efold = Ebending – γ2  
(Lfold – 2L)

Utilizing Eqn. (1), Xianhong et al. carried out MD simulations to investigate self-folding 

of graphene. MD simulations were carried out assuming a constant temperature of 0 

Kelvin (K) to prevent atomic vibrations in agreement with theoretical models. To initiate 

the self-folding process an external force was applied in order to bring the graphene sheet 

ends closer together. Then energy minimization of the system was initiated. This process 

was repeated for graphene sheets of different lengths so as to identify metastable and 

stable self-folding. Using this methodology, Xianhong et al. found a critical length of 

graphene sheets for stable self-folding of Lfold = 11 nm. They classified the critical length 

of graphene required for self-folding into three regimes.

1. For graphene lengths Lfold below 6.5 nm, self-folding was not possible, and only a 2D

configuration was stable.

2. For Lfold between 6.5 nm and 10.5 nm, self-folding was metastable, where both 2D and 

3D configurations were stable.

3. For Lfold longer than 10.5 nm, self-folding or 3D configuration of the graphene sheet

was stable.

50 Tarsicio/Cristian/Augusto 2002.
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Jiong Zhang et al. demonstrated that ultrasonication of graphene sheets in solution at 

200 W for ten minutes, leads to the formation of folds in the 2D structure.51 This implies 

suspended graphene sheets can fold under mechanical stimuli. They demonstrated that 

using Transmission Electron Microscopy (TEM) and computer based simulations it is 

possible to determine the length of the overlapping region and the shape of the curved 

edge. Based on simulations, the minimum length of the overlapping region should be 

at least 1.68 nm to form a stable fold. TEM studies of 100 graphene folds revealed that a 

given fold had either a 0 degree (armchair) or a 30 degree (zigzag) edge (fig. 4). 

Zigzag

A
rm

-c
ha

ir

Fig. 4: 0 degree (armchair) or 30 degree (zigzag) fold edges.

To understand their results better, Zhang et al. used further simulations to minimize 

the energy of graphene folding at different fold edge angles. These simulations showed 

two prominent fold edge energy minima at 0 and 30 degrees, implying the energy of the 

folded graphene could be explained through lattice registry effects. Moreover, overlapping 

regions of graphene folds with AA and AB stacking (fig. 3c and 3d) require the highest 

and lowest energy states respectively. They suggested their results could be used for 

the design of graphene-based nanodevices.

These results agree with previous MD simulations by Niladri Patra et al., in which they 

demonstrated guided folding of graphene sheets.52 Patra et al. further studied the 

transformation of 2D graphene sheets into 3D structures at locations where a water 

droplet was deposited. They observed that, irrespective of the shape of the graphene 

sheet, graphene could enwrap the water nanodroplets at T = 300 K (room temperature). 

Such enveloping causes the sheets to bend from their natural 2D configuration into a 

configuration maintained for a long period of time, even though it is not a minimum 

energy (metastable) 3D structure. 

51 Wang et al. 2013.

52 Patra/Wang /Král 2009.
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They demonstrated further that, by increasing the temperature of the system from 300 K 

to 400 K, the shape fluctuations of water nanodroplets increases. Eventually van der Waals 

attraction between the graphene sheets causes the water droplets to get ejected. Patra et 

al. calculated the flexural rigidity of the graphene sheets and compared it to theoretically 

derived values. Their figure was 0.194 nN nm, which is very close to previously calculated 

values of 0.238 nN nm, 0.11 nN nm, and 0.225 nN nm from other studies.53 

They therefore considered their simulations to be reasonably close to the possible ex-

perimental values. Consequently, the results of MD simulations carried out by Patra et 

al. imply that nanodroplets activate and guide folding of graphene sheets of complex 

shapes, similar to chaperones fold proteins.54 These studies not only demonstrate the 

possibility of controlling the folding process using water nanodroplets and temperature 

changes. The latter implies possible applications of water nanodroplets packaging with 

graphene sheets.

Luca Ortolani et al. investigated the structure of graphene grown by chemical vapor 

deposition (CVD) on copper substrates by transferring graphene onto a TEM grid.55 They 

used high-resolution transmission electron microscopy (HRTEM) to study graphene sheets 

at folded regions. In order to map out the curvature at the folds, compressions, observed 

in TEM images of the graphene lattice, were subject to geometric phase analysis (GPA).56 

Data obtained from GPA analysis then helped them to reconstruct variations in height 

and local curvature of edges of graphene folds within a spatial resolution of 0.5 nm. 

Ortolani et al. propose the analysis of apparent strains in HRTEM images of general 

2D sheets as a way to achieve sub-nanometer topographic information experimentally.

2.2 Defect guided wrinkling or folding in graphene

In the structure of an atomically thin sheet of graphene, there may be regions in which 

structural homogeneity is disrupted. Structural defects are found where the honeycomb 

structure is altered by randomly occurring pentagonal or heptagonal rings (fig. 5b and 

5c).57 It has been shown that structural defects affect the mechanical properties of the 

graphene.58 Both the density of defects and their regional arrangements have been shown 

53 Qiang/Marino/Rui 2009; Marino/Belytschko 2004; Kudin/Scuseria/Yakobson 2001.

54 Ellis/Van der Vies 1991.

55 Ortolani et al. 2012.

56 GPA analysis is a well-established experimental technique aimed at studying strained segments of 

nanomaterials.

57 Zhang et al. 2010.

58 Lusk/Carr 2008; Grantab/Shenoy/Ruoff 2010; Liu/Yakobson 2010; Rasool et al. 2013.
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critical to mechanical properties.59 For graphene grown on different substrates, such as 

mica or copper, individually grown crystals meet at a grain boundary (GB). 

It is known that, in addition to the probable existence of structural defects at any loca-

tion on grown crystals, the GB region always contains many structural defects. Haider 

Rasool et al. studied grain boundaries in graphene sheets using HRTEM and found that 

heptagonal and pentagonal defects are present at the GBs.60 Rasool et al. observed a 

variation in carbon bond lengths at the center of the GB regions, where they were either 

much smaller or much larger compared with the normal length. 

A bond length increase or decrease within the GB of the graphene sheet results in a tensile 

or compressive strain within that region. These strained regions affect the configuration 

of graphene by creating corrugations or bending in or out of plane of the sheet. 

a

d

b

e

c

Fig. 5: Configurations of a simulated graphene sheet with dislocation dipole. (a) Perspective view of a region 

affected by dislocation. (b) Top view of the dislocation affected region. (c) Bond structure around the 

dislocation core. (d & e) Graphene ruga produced by a periodic placement of disclinations. (d) Continuum 

modeling and (e) atomistic simulations demonstrating that both methods could simulate the ruga structure 

of graphene. Scale bar shows 1 nm. Color bar represents variation in height.

59 Wei et al. 2012.

60 Rasool et al. 2013.
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In a recent study, Teng Zhang et al. 2014 explored wrinkling and bending in graphene 

due to line defects-disclinations (observed where two or more planes of atoms in a crystal 

meet).61 They demonstrated that a significant amount of wrinkling in 2D graphene sheets 

is likely the result of topological defects caused by disclinations or dislocation of atoms 

in the graphene lattice, which could be found at the grain boundaries. Furthermore, they 

examined whether inserting such defects intentionally could help control the wrinkling 

of graphene sheets to a desired folding or wrinkling configuration. 

To answer this question they presented two examples of curved graphene sheets that can 

be produced and topographically tuned through the variation of topological defects. One 

of these examples was taken from Alexander Hexemer et al. study.62 The latter carried 

out Monte Carlo simulations to predict the emergence of disclinations in a lattice of 

charged particles on a high aspect ratio sinusoidal surface.63 Hexemer et al. predicted a 

periodical array of distributed disclination quadruples in a square unit cell creates a wavy 

graphene (fig. 5d and 5e).

This has been referred to as a graphene ruga.64 Teng Zhang et al.65 reproduced the graphene 

ruga through other models and its potential energies were minimized using computer 

molecular dynamics under periodical boundary conditions. A simple visual comparison 

between the graphene ruga structure produced by molecular dynamics simulations and 

the one produced through continuum mechanics calculations demonstrates that purely 

mechanics-based models (that is continuum models) are able to capture large scale 

wrinkling induced by structural defects in graphene. 

Overall, studies by Zhang et al. have demonstrated that it is feasible to control the 

structural transition of graphene sheets to 3D structures by manipulation of the position 

of structural defects. Control over the structural defects introduces new possibilities for 

the design of application-specific products based on graphene. Changes in configuration 

introduced through topological defects have been shown to play a critical role in altering 

the mechanical, thermal and electric properties of graphene sheets.66

Apart from the alteration of graphene properties through the introduction of structural 

defects, Guo Wang et al. have demonstrated that the intentional creation of a line defect 

61 Zhang et al. 2010.

62 Hexemer et al. 2007.

63 In physics, Monte Carlo methods are usually used for systems with many coupled (interacting) degrees 

of freedom, such as disordered materials or fluids. Monte Carlo simulations are based on a wide range of 

different algorithms, which rely on random resampling to obtain numerical results.

64 Zhang/Li/Gao 2014.

65 Zhang et al. 2010

66 Huang et al. 2011.
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in graphene offers a way to engineer further wrinkling.67 Wang et al. carried out molecular 

simulations of graphene sheets containing one-dimensional periodic defects known as 

Stone-Wales defects. 

Anthony Stone and David Wales, studied the icosahedral C60 (fullerene) and related 

structures with a theoretical perspective in 1986.68 At the time, Stone et al. proposed 

that C60 has many other isomeric structures almost as stable as the icosahedral. The 

isomers proposed by Stone et al. required certain rearrangements in carbon-carbon 

bonding, which became known as Stone-Wales rearrangements. 

A Stone-Wales rearrangement involves a change in π-bonding of two carbon atoms, 

allowing for a 90 degree rotation with respect to the midpoint of their bond (fig. 6). 

Inherently, Stone-Wales defects form an out-of-plane bending angle with respect to the 

longitudinal axis of the sheet, which is known as the defect angle. Wang et al. demon-

strated that tuning the defect angle of Stone-Wale defects results in tuning the direction 

of the graphene wrinkling. 

Fig. 6: Stone-Wales rearrangement routes: route A is a concerted mechanism and route B is a stepwise 

process. According to Stone-Wales rearrangement, two pi-bonded carbon atoms (marked ‘1’ and ‘2’) rotate 

90 degree with respect to the midpoint of their bond. The end product of the rearrangement is an energetical-

ly more stable structure.

67 Wang et al. 2013.

68 Stone/Wales 1986.
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It is known since the early 1990s that the formation of fullerene, as a 3D structure,69 is 

due to a bottom-up mechanism involving small clusters of carbon atoms.70 However, it 

was only in 2010 that Andrey Chuvilin et al. reported the formation of fullerenes in-situ.71 

This involved folding of a graphene nanoribbon into a fullerene after exposure to TEM. 

To understand this process it is important to note that TEM uses an electron beam 

(e-beam) to produce an image of an ultra-thin sample. 

As the electron beam passes through the ultra-thin sample, it interacts with it. When 

graphene sheets are imaged using TEM, the graphene edges appear to be continuously 

changing their shapes. Chuvilin et al. observed that the high energy TEM beam of electrons 

causes fragmentation of larger graphene sheets into smaller ones. As TEM imaging 

carried on, small graphene flakes tended to transform to fullerene molecules in which the 

structure remained stable. The authors explained that, for the purpose of transformation 

of small sheets into fullerene, the creation of defects at the edges of these sheets was 

important. Defects induced by the electron beam at the edges of the graphene sheets 

underwent continuous reconstruction, leading to the most stable configuration. Note 

that the size of the initial 2D sheets is very important for 2D to 3D transformation: for 

sheets smaller than 60 carbon atoms the strain caused by defects does not suffice to 

bend the sheet enough to produce a fullerene. 

3. Impact of folding on graphene’s electronic properties

In this section we review studies concerning the effect of folding on the electronic prop-

erties of graphene sheets, especially as it is related to its geometry.

A folded region in a graphene sheet can resemble a fractional nanotube structure, in 

other words, a hairpin.72 This implies the electronic properties of a folded graphene 

sheet are expected to differ from those of a cylindrical carbon nanotube, due to lack of 

symmetry in the structure of the hairpin-folded graphene. 

Ji Feng et al. investigated the effect of a zigzag or armchair structural configuration of 

carbon bonds on the electronic properties of the folded graphene sheets.73 The density 

functional theory (DFT) as such does not explain the long range electron correlations 

69 Icosahedral structure based on carbon rings.

70 Yannoni et al. 1991; Hawkins et al. 1991; Ebbesen/Tabuchi/Tanigaki 1992.

71 Chuvilin et al. 2010.

72 Huang et al. 2009.

73 Feng et al. 2009.
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responsible for van der Waals adhesion between bilayers.74 Local density approximation 

(LDA), on the other hand, employs a high enough level of accuracy to explain the equi-

librium interaction potential between graphene layers.75 

Following DFT-LDA optimizations, Feng et al. demonstrated that the folded graphene 

sheets with zigzag carbon-carbon bonds at the edge of the fold exhibit a top-bottom 

separation of 0.52 nm and 0.36 nm at the flat region bilayer separation. In the case of 

armchair carbon-carbon bonds at the fold edge, the fold top-bottom separation and 

the flat region bilayer were 0.72 nm and 0.37 nm, respectively. A top-bottom distance 

variation due to the zigzag and armchair fold edge configurations causes a variation in 

the scattering of the electrons in the folded region. The zigzag configuration at the fold 

edge results in a tighter hairpin, which causes more electron scattering and therefore 

lower conductance (electron mobility) at those folds.

Jhon González et al. investigated the electronic transport properties of folded nanoribbons 

of graphene sheets by theoretical means.76 They considered two possibilities for folding: 

(1) a hairpin-shaped graphene nanoribbon folded on itself with the overlapping flat regions 

having a 0 degree contact direction (matching lattice), (2) a similarly folded graphene 

sheet only with overlapping flat regions (top layer) having 60 degree misorientation with 

the longitudinal axis of the bottom layer.77 

González et al. demonstrated that, for the hairpin folded graphene nanoribbons having 

overlapping regions with 0 degree contact direction, conductance is similar to that of 

a stack of two graphene sheets with matching lattices, as a result of the fact that con-

ductance is affected by the size of the scattering region (within the overlap and arched 

regions).78 In the case of a 60 degree contact direction between overlapping regions, 

a slight mismatch of the sub-lattices disturbed the conductance symmetry within the 

hairpin-folded graphene nanoribbon. Scattering in the folded regions for both 0 degree 

and 60 degree caused an overall reduction in conductance of the folded graphene sheets, 

compared with that of flat single layer sheets. As a consequence, 60 degree folded na-

noribbons of graphene have smaller sized scattering regions, giving rise to a conductance 

value closer to that of unfolded nanoribbons.

74 In its simplest definition, density functional theory is a computational quantum-mechanical modeling 

method used to investigate the electronic structure of atoms and molecules.

75 Girifalco/Hodak 2002.

76 González et al. 2012.

77 Misorientation is the difference in crystallographic orientation between two crystallites.

78 González et al. 2010.
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4. Graphene and graphene oxide folding and application-based studies

In this section we describe recent studies on the folding of graphene and graphene oxides 

with an emphasis on their applications to storage systems. We further present studies 

on their specific patterning for encoding the folds. 

Toby Hallam et al. presented a method termed Grafold for printing folded graphene films.79 

Their method is based on using stamps with periodically varying adhesion to produce 

periodic waves within graphene sheets. Graphene is first transferred onto a patterned 

elastomeric stamp and then mechanically folded by placing the stamp over the desired 

substrate and slowly peeling it away. It is important to mention that folds produced in 

this way in the graphene sheets are more similar to wrinkles.80 Hallam et al. found that 

graphene exhibited little strain at these folds (wrinkles) with a charge transport anisotropy 

within them. They suggested that Grafold could be utilized to produce wrinkles and folds 

in other 2D sheets such as MoS2.81

Concerning graphene oxide folding, Fei Guo et al. observed that dried folded graphene 

oxide aggregates undergo a large anisotropic swelling upon rehydration to regain their 

hydrated unfolded forms.82 This folding and unfolding was found to be unique to the 

hydration process, while drying causes a buckling in the structure that stores elastic 

energy.83 The authors suggested graphene oxide could constitute a new class of stimuli-re-

sponsive materials in nanoelectronic devices or even in controlled drug-release systems. 

Chen et al. studied GO-based nanosacks.84 They demonstrated that, when graphene 

oxide and a secondary solute are dispersed in water microdroplets within a spray system, 

a spontaneous segregation into nanosack-cargo nanostructures takes place upon drying. 

They carried out MD simulations to understand the mechanisms behind this process. 

They found graphene oxide sheets tend to accumulate at the water/air interface; as 

drying takes place, the secondary solute is trapped within the graphene oxide sheets in 

the form of cargo-filled graphene nanosacks. They proposed this process to be scalable 

– promising for applications where nanomaterials need to be isolated from a specific 

environment (fig. 7). 

79 Hallam et al. 2015.

80 See ibid, fig. 2c.

81 Molybdenum disulfide is the inorganic compound with the formula MoS2.

82 Guo et al. 2011.

83 Elastic energy is the potential mechanical energy stored in the configuration of a material or physical 

system as work is performed to distort its volume or shape.

84 Chen et al. 2012.
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Fig. 7: Colloidal self-assembly of graphene oxide sheets into nanosacks containing the secondary solute. 

Black and white image shows a scanning electron microscope image of the nanosack filled with nanoparticles. 

Soodabeh Movahedi et al. carried out edge modifications of graphene sheets.85 They 

proposed a procedure for functionalizing the graphene edge using hyper-branched 

polyglycerols.86 It is important to mention the original graphene oxide sheets in their 

study were synthesized and later reduced to produce reduced graphene oxide sheets. 

Since hyper-branched polyglycerols are hydrophilic and graphene is hydrophobic, the 

authors argued that dispersing such a combination in water results in the bending of the 

hydrophobic graphene portion from a flat surface into a capsule-shaped geometry. The 

nanocapsules produced using such a method could encapsulate hydrophobic molecules 

such as doxorubicin, which is a known anti-cancer drug. 

Chemical patterning of graphene has served as an important idea in the transformation 

of 2D flat graphene sheets into more complex 3D configurations. Elias et al. demonstrated 

that, albeit graphene is one of the most chemically inert materials, it could nevertheless 

react with atomic hydrogen, thereby transforming it from a highly conductive 2D sheet into 

an insulating one.87 They found the hydrogenation process for graphene to be reversible, 

and conductivity could be restored through merely heating. This is an interesting fact, 

since it implies that the hydrogenation process affects not only the conductivity but 

also the 2D flat structure of graphene. This is attributed to disruptions in the honey-

comb structure of graphene caused by the hydrogen atoms. Therefore, hydrogenation 

of graphene sheets at selected areas could be a way of encoding folding (fig. 8). The 

benefits of this are discussed below. 

85 Movahedi et al. 2013.

86 Hyper-branched polyglycerols are polymers with a large number of branches, very similar to a tree structure.

87 Elias et al. 2009.
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a
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Fig. 8: Top and side view of hydrogen-assisted graphene folding with its resulting fold angles at equilibrium. 
(a) One-line and (b) two-line hydrogenation are introduced along the zigzag direction of a graphene lattice. 
(c) One-line, (d) two-line and (e) three-line hydrogenation are introduced along the armchair direction of a 

graphene lattice. The bottom row plots the variation in folding angle at 300 K over time; variation in the angle 

of the fold throughout the simulation indicates the stability of the folded substructure.

Zhu et al. carried out systematic MD simulations to demonstrate the feasibility and 

robustness of hydrogen-assisted graphene origami (HAGO).88 Simulations revealed that, 

when hydrogenation is present at both sides of a 2D graphene sheet, the structure remains 

planar; such a fully hydrogenated graphene structure is known as graphane.89 However, 

when hydrogenation is introduced in a controlled manner along a line formation on any 

one side of graphene, a net structural distortion can indeed cause folding and bending. 

Hydrogen-assisted bending occurs along the hydrogenated line in a certain angle depen-

dent on the number of the hydrogenated rows (fig. 8). It was further demonstrated that 

an external electric field could further aid in controlling the folding process in HAGO. 

They attributed the effect of the external electric field to the polarization of carbon 

atoms in graphene and consequent a change in inter-graphene layer interactions. This 

demonstrates a decrease of the inter-wall van der Waals energy of adhesion between the 

graphene layers resulting from an increase in external electric field intensity. 

The authors hence propose using graphene-based nanocages as a means of hydrogen 

storage, while controlling its release through temperature elevation and electric field 

variation. 

88 Zhu/Li 2014.

89 Elias et al. 2009; Sofo/Chaudhari/Barber 2007.
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Another recent example in using folding for storage purposes is found in the experimental 

work by Hamid Reza Barzegar et al.90 they demonstrated a facile solution-based method 

to insert smaller molecular structures, such as fullerene, C60, into carbon nanotubes. 

In other words, carbon nanotubes could act as peapods by harboring fullerenes. This 

was previously reported as a result of simulations by Smith et al., where fullerenes were 

encapsulated by single-wall carbon nanotubes.91 

The transformation of carbon nanotubes from a tube into a collapsed and flattened bilayer 

of graphene, tightly bound with two folded edges, can takes place only when the tube 

diameter is larger than a certain critical value.92 Using high resolution TEM, Barzegar et 

al. observed that the fullerenes are initially packed along the hairpin tube edge and not 

at the center of the tube. Eventually the nanotube fills up with fullerenes. 

Oliver Ochedowski et al. carried out alterations of chemical bonds of graphene sheets at 

specific locations using swift heavy ion irradiation (SHI irradiation).93 They investigated 

the effect of high-energy ion beam irradiation on 2D sheets such as graphene and MoS2. 

Swift heavy ion radiation specifically interacts and affects the electronic excitation and 

ionization of a material. Ochedowski et al. proposed two phases in graphene sheets 

after exposure to SHI radiation. 

At the beginning, the graphene sheet bends at the regions exposed to ion radiation and 

forms a bilayer graphene, a process that can locally increase its mechanical strength. In 

the second phase, graphene forms a hairpin-folded segment, which affects its chemical 

reactivity and electron transports at those segments. It was found that, when exposed 

to the SHI radiation, graphene could transform from 2D into 3D configurations with 

segments including at least three folds. Such a number of folded segments were not 

observed, however, in the case of MoS2 sheets. It is not yet known what is behind the 

number of folded segments. 

Using scanning force microscopy, the folded regions in MoS2 were found to be higher 

than their graphene counterparts. This was attributed to the inter-layer spacing in MoS2, 

which is 0.75 nm and almost twice as high as that of graphene. Folding observed by 

Ochedowski et al. is believed to be the experimental evidence of defect formation in the 

exposed areas of graphene and their subsequent self-folding.

90 Barzegar et al. 2015.

91 Smith/Monthioux/Luzzi 1998.

92 Chopra et al. 1995; He et al. 2014.

93 Ochedowski et al. 2014.
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5. Summary and conclusions

Most simulations and theoretical work done so far emphasized the possibility of folding 

or self-folding in graphene. There have been studies regarding instances of graphene 

folding by externally applied forces. However, for a variety of reasons, the guided folding 

of graphene and graphene oxide has not been demonstrated experimentally yet. Nev-

ertheless, simulation of chemical patterning and modification of graphene sheets was 

shown to be able to encode the desired folding patterns within the sheets. 

Programmed self-assembly of 2D sheets into bulk material with specific properties, or 

the self-assembly of single sheets into 3D structures, is potentially simple and cheap, 

hence well suited for advanced applications such as drug delivery or nanostorage. It 

therefore affords promising possibilities for future industrial production of advanced 

materials in a way that has advantages over current production methods. Therefore, 

experimental methods and further investigations in controlling and defining the forces 

affecting folding at the nanoscale level are needed.
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