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Abstract: This study investigated how one’s problem-solving style impacts his/her problem-solving
performance in technology-rich environments. Drawing upon experiential learning theory, we ex-
tracted two behavioral indicators (i.e., planning duration for problem solving and human–computer
interaction frequency) to model problem-solving styles in technology-rich environments. We em-
ployed an existing data set in which 7516 participants responded to 14 technology-based tasks of
the Programme for the International Assessment of Adult Competencies (PIAAC) 2012. Clustering
analyses revealed three problem-solving styles: Acting indicates a preference for active explorations;
Reflecting represents a tendency to observe; and Shirking shows an inclination toward scarce tryouts
and few observations. Explanatory item response modeling analyses disclosed that individuals with
the Acting style outperformed those with the Reflecting or the Shirking style, and this superiority
persisted across tasks with different difficulties.

Keywords: problem-solving style technology-rich environments; experiential learning theory;
k-means clustering; explanatory item response modeling; log file data

1. Introduction

As information and communication technologies rapidly integrate into people’s
everyday lives, the importance of being able to use technological tools to solve prob-
lems continues to grow in recent years (Hämäläinen et al. 2015; Koehler et al. 2017;
Zheng et al. 2017). As highlighted by Iñiguez-Berrozpe and Boeren (2020), being insuffi-
cient to solve technology-based problems can exclude one from the labor market. This
has been particularly true when people felt challenged to use computers or other digi-
tal devices to perform work-related activities (Hämäläinen et al. 2015; Ibieta et al. 2019;
Nygren et al. 2019; Tatnall 2014). Nonetheless, a huge amount of people seem to have in-
sufficient problem-solving performance in technology-rich environments (TRE). As pointed
out by Nygren et al. (2019), more than 50% of European aged 16–64 years old were deficient
in coping with practical tasks in TRE (e.g., communicating with others by email). Notably,
TRE incorporate diverse, versatile, and constantly evolving digital technologies, leading to
difficulties in being operated expertly. Considering feasibility reasons, TRE in the present
study are limited to settings involving the most common digital technologies (Nygren et al.
2019): computers (e.g., spreadsheet) and Internet-based services (e.g., web browser). To
boost the use of digital technologies, a bulk of research has investigated factors that might
affect humans’ problem-solving performance in TRE (e.g., Liao et al. 2019; Millar et al. 2020;
Nygren et al. 2019; Ulitzsch et al. 2021). Among those findings, problem-solving style was
regarded as one of the most prominent factors (e.g., Koć-Januchta et al. 2020; Lewis and
Smith 2008; Treffinger et al. 2008).
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Problem-solving style describes pervasive aspects of individuals’ natural disposi-
tions toward problem solving. According to Selby et al. (2004, p. 222), problem-solving
styles are “consistent individual differences in the ways people prefer to plan and carry
out generating and focusing activities, in order to gain clarity, produce ideas, and pre-
pare for action”. This broadly accepted definition indicates that problem-solving style
derives from one’s distinguishable behavioral pattern (e.g., He et al. 2021; Ulitzsch et al.
2021). In this regard, problem-solving styles in TRE reflect individuals’ dispositions re-
garding how they are inclined to interact with surrounding technology environments.
Implicit tendencies, in turn, can be partially explicated by behavioral indicators recorded in
computer-generated log files, such as timestamps, clicks, and sequence of actions (Bunder-
son et al. 1989; Eichmann et al. 2019; Oshima and Hoppe 2021). In other words, a critical
empirical avenue to profiling an individual’s problem-solving style in TRE is to analyze
log file data collected in computer-based problem-solving assessments.

This study analyzed log file data of the Programme for the International Assessment
of Adult Competencies (PIAAC) 2012 to unpack problem-solving styles in TRE and ex-
amined how problem-solving styles were associated with participants’ performance on
TRE-related tasks. In PIAAC 2012, a total of 14 tasks were administered to assess partici-
pants’ problem-solving competencies in TRE, all of which simulate real-world problems
that adults likely encounter when using computers and Internet-based technologies. The
data from assessment tasks provide rich information, such as performance and behavioral
information. However, abstracting the useful information from the log files is challeng-
ing because multiple variables with manifold types are embedded in the data structure
(Han et al. 2019). To overcome this challenge, we first applied clustering techniques to
multiple behavioral indicators derived from the 14 tasks, thereby partitioning participants
into discrepant clusters. Each cluster was further analyzed and its specific problem-solving
style was identified according to behavioral indicators. Finally, we examined how the per-
sonal features (i.e., problem-solving style) and their interaction with task features (i.e., task
difficulty level) account for participants’ task performance by explanatory item response
modeling (EIRM; De Boeck and Wilson 2004).

1.1. Problem-Solving Styles in TRE

In this study, the problem-solving style in TRE is conceptualized and operational-
ized as the consistent individual behavior in planning and carrying out problem-solving
activities in surrounding technology environments (Isaksen et al. 2016; Selby et al. 2004;
Treffinger et al. 2008). Despite the importance and the pervasiveness of problem-solving
styles, few pertinent theories have been put forward in this area. A potential theory that
may enlighten our understanding of problem-solving styles in TRE is experiential learning
theory (Kolb 2015). Experiential learning theory emphasizes the central role of experience
in human learning and development processes and has been widely accepted as a useful
framework for educational innovations (Botelho et al. 2016; Koivisto et al. 2017; Morris
2020). In his seminal works, Kolb (2015) suggests four types of learning modes to portray
individuals’ learning preferences as a combination of grasping and transforming experi-
ences: if individuals prefer an abstract grasping of information from experiences, their
inclined learning mode is abstract conceptualization (AC); in contrast, if individuals prefer
highly contextualized and hands-on experiences, their learning mode is known as concrete
experience (CE); if individuals prefer to act upon the grasped information, their preference
of transforming experience is active experimentation (AE); otherwise, their preferred way
may be reflective observation (RO). Thereafter, much research has studied learning styles
based on individuals’ relative preferences for the four learning modes and agrees upon
a nine-style typology (e.g., Eickmann et al. 2004; Kolb and Kolb 2005a; Sharma and Kolb
2010). Specifically, four learning styles emphasize one of the four learning modes; another
four represent learning style types that emphasize two learning modes; one learning style
type balances all the four learning modes. For example, learning styles of Acting and
Reflecting correspond to learning modes of AE and RO, respectively. Individuals with the
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Acting style usually possess highly developed action skills while utilizing little reflection
(AE). In contrast, those with the Reflecting style spend much time buried in their thoughts,
but have trouble putting plans into action (RO).

Learning modes are highly associated with problem-solving styles. There is an emerg-
ing consensus that learning interacts with and contributes to ongoing problem-solving
processes (Ifenthaler 2012; Wang and Chiew 2010). Research has indicated that problem
solving is not only a knowledge application process but also a knowledge acquisition
and accumulation process. In this respect, humans’ learning modes along with exploring
problem environments can be part of problem-solving styles (Kim and Hannafin 2011). For
example, Romero et al. (1992) developed the Problem-Solving Style Questionnaire based
on a hypothesized problem-solving process in which the four learning modes (i.e., CE,
RO, AC, and AE) are involved. Besides the close conceptual connections between learning
modes and problem-solving styles, learning modes are increasingly incorporated into
designing technology-enhanced learning environments given their capability to describe
users’ online learning styles. For example, Richmond and Cummings (2005) discussed the
integration of learning modes with online distance education and suggested that learning
modes should be considered for instructional design to ensure high-quality online courses
and to achieve positive student outcomes. In addition, an earlier study by Bontchev et al.
(2018) has demonstrated the usefulness of learning modes in enlightening humans’ styles in
game-based problem solving. Therefore, learning modes can potentially inform the types
of problem-solving styles in TRE.

1.2. Acting and Reflecting Styles

Among learning styles portrayed in a two-dimensional learning space defined by AC-
CE and AE-RO, the Acting and Reflecting styles are particularly representative of individual
interactive modes in TRE. For example, Hung et al. (2016) took the Acting and Reflecting
styles into account when they provided adaptive suggestions to optimize problem-solving
performance in computer-based environments. Bontchev et al. (2018) investigated problem-
solving styles within educational computer games, which correspond to the Acting and
Reflecting styles. These studies confirmed that the Acting and Reflecting styles are feasible to
describe problem-solving styles in TRE.

A distinctive feature of the Acting style is the strong motivation for goal-directed
actions that integrate people and objects (Kolb and Kolb 2005b). Individuals with the Acting
style prefer to work and try objects out (Hung et al. 2016). Within TRE, individuals with the
Acting style habitually perform actions quickly and frequently, which implies their intuitive
readiness to act. In contrast, the Reflecting style is characterized by the tendency to connect
experience and ideas through sustained reflections (Kolb and Kolb 2005b). Individuals
with the Reflecting style prefer to evaluate and think about objects (Hung et al. 2016). When
interacting with objects in TRE, they need time to observe and establish the meaning of
available operations in technological environments. They watch patiently rather than
automatic reaction and wait to act until certain of their intention.

In addition to their suitability for describing problem-solving styles in TRE, evidence
shows that the Acting and Reflecting styles are relevant to problem-solving performance.
For example, Kolb and Fry (1975, p. 54) suggested that a behaviorally complex learning
environment distinguished by “environmental responses contingent upon self-initiated
action” emphasizes actively applying knowledge or skills to practical problems, and thus
better supports the learning mode of AE. Following this view, individuals with the Acting
style are supposed to have better performance in TRE-related tasks than those with the
Reflecting style who have deficiencies in AE. However, this theoretical assumption needs to
be empirically examined.

Furthermore, it is crucial to consider the role of problem characteristics (e.g., problem
type or problem difficulty) in the relationship between individuals’ problem-solving styles
and their performance in problem solving. As stated by Treffinger et al. (2008), an indi-
vidual’s preference for a certain problem-solving style can influence his or her behavior in
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finding, defining, and solving problems. That is, a certain problem-solving style can either
hamper or facilitate problem-solving performance, depending on some characteristics of
problems. For example, Treffinger et al. (2008) found that individuals with the explorer
style deal well with ill-defined and ambiguous problems, while individuals with the devel-
oper style are adept at handling well-defined problems. Thus, studies need to examine the
role of problem characteristics when investigating the impact of problem-solving styles on
problem-solving performance.

1.3. Behavioral Indicators of Acting and Reflecting Styles in TRE

To examine the feasibility of the Acting and Reflecting styles in describing problem-
solving behaviors in TRE, two behavioral indicators were abstracted from log files: duration
of planning period at the beginning of the problem-solving process and interaction fre-
quency during the entire problem-solving process. For simplicity, the two behavioral
indicators were abbreviated as planning duration and interaction frequency, respectively.
Planning duration denotes the period from the time that a task starts to the point that people
take their first action to perform the task. It is also called first move latency (e.g., Albert and
Steinberg 2011; Eichmann et al. 2019) or timing of the first action (e.g., Goldhammer et al.
2016; Liao et al. 2019). In this study, the term “planning duration” is used to emphasize
people’s thinking and reflection on the problem at hand (Albert and Steinberg 2011). Inter-
action frequency indicates how frequently people interact with a task during the period
from the first action to the end of the task.

The two indicators formulate a two-dimensional space that could portray individuals’
problem-solving behaviors. Specifically, based on previous research (e.g., Eickmann et al.
2004; Hung et al. 2016; Kolb and Kolb 2005a), individuals with the Acting style prefer to act
on tasks with multiple trials while seldom reflecting on their behaviors during the course.
They perform like experimentalists. In contrast, those with the Reflecting style prefer to
fully reflect on situations instead of taking concrete actions. They tend to be theoreticians.
During problem solving in TRE, individuals with the Acting style usually spend less time
on planning, but interact more with objects in comparison with those with the Reflecting
style who spare more time for planning, but execute tasks less.

Although the role of planning duration and interaction frequency in problem solv-
ing has been widely studied previously (Albert and Steinberg 2011; Eichmann et al.
2019; Greiff et al. 2016), no study has explored how these two measures together inform
individual problem-solving styles in TRE. Albert and Steinberg (2011) found that planning
time, which reflects self-regulatory control, strongly and positively predicted outcomes of
problem solving. However, a longer time of first-move latency may not necessarily indicate
participants as being more thoughtful. Instead, participants may merely feel confused
about problems (Zoanetti and Griffin 2014). In fact, interaction frequency could cooperate
with planning duration in inferring participants’ inclination toward problem solving in
TRE (Eichmann et al. 2019). For example, a thoughtful individual would not only spend
more time planning at the beginning but also have relatively fewer tryouts during the
problem-solving process, indicating their accurate reasoning and confident judgments.

1.4. Current Study

Given the limited volume of research on humans’ problem-solving styles in TRE, this
study first examined Acting and Reflecting styles in TRE using two indicators: planning
duration and interaction frequency. We then compared different problem-solving styles to
identify the most desirable one for solving technology-based problems. Finally, we exam-
ined how task difficulty moderates the relationship between individual task performance
and individual problem-solving styles. The study answers three research questions:

1. Did participants demonstrate Acting or Reflecting problem-solving styles when solving
problems in TRE?

2. If so, which problem-solving style better favors participants’ performance?
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3. How did task difficulty moderate the relationship between participants’ problem-
solving styles and their performance on TRE-related tasks?

2. Materials and Methods
2.1. Participants

We employed existing data from the PIAAC 2012 conducted by the Organisation for
Economic Co-operation and Development (OECD). In total 81,744 participants aged 16 to 65
from 17 countries participated in the PIAAC test (Organisation for Economic Co-operation
and Development (OECD) 2013). The participants were randomly assigned to two of the
three cognitive modules, each of which comprised either literacy, numeracy, or problem-
solving in TRE (PSTRE) tasks (Organisation for Economic Co-operation and Development
(OECD) 2013). We analyzed 10,806 participants who responded to two PSTRE modules
from 14 of the 17 countries, as data from three countries (i.e., France, Italy, and Spain)
were not available. We cleaned the invalid data as some participants merely pressed the
next button without responding to the questions. Participants with outliers in terms of
three variables (i.e., the timing of the first action, the total number of interactions, and the
duration of the entire problem-solving process) were also excluded. Outliers were identified
by examining whether values lay outside of three standard deviations of the average value.
Eventually, N = 7516 participants with an average age of 36.29 years (SD = 13.62) were
included in the analysis, of which 47.90% were male. The demographic information of
participants included in the study was presented in Table 1 by country.

Table 1. Demographic Information of Participants in the Present Study.

Country N
Gender Age

Male Female Average SD

Austria 414 227 187 NA 1 NA 1

Belgium 503 255 248 37.29 13.74
Denmark 684 316 368 42.31 14.44
Estonia 628 283 345 35.73 13.21
Finland 501 264 237 37.44 13.22

Germany 420 206 214 NA 1 NA 1

Ireland 492 236 256 36.94 11.77
Republic of Korea 465 226 239 33.71 11.84

Netherlands 521 242 279 39.11 14.49
Norway 496 253 243 37.96 13.54
Poland 711 352 359 26.25 9.90

Slovakia 383 197 186 33.57 12.99
United Kingdom 869 338 531 38.51 12.91

United States 429 205 224 NA 1 NA 1

1 NA indicates there is no available information.

2.2. Instruments

The PSTRE domain aims to measure “abilities to solve problems for personal, work
and civic purposes by setting up appropriate goals and plans and accessing and making use
of information through computers and computer networks” (Organisation for Economic
Co-operation and Development (OECD) 2013, p. 56). Accordingly, 14 computerized tasks
were developed to mimic real-life problems that adults are likely to encounter while using
computers and Internet-based technologies (Organisation for Economic Co-operation and
Development (OECD) 2019). Organisation for Economic Co-operation and Development
(OECD) (2012, p. 48) defined three core dimensions when developing the 14 tasks. The first
dimension is problem circumstances that trigger a person’s curiosity about problem solving
and determine actions required to be taken to solve problems. The second is technologies
through which problem solving is conducted, such as computer devices, applications, and
functionalities. The third dimension is cognitive processes underlying problem solving
(e.g., goal setting and reasoning). These three dimensions played an intertwined role in
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distinguishing participants’ proficiency levels in PSTRE. For example, the “Job Search” task
(see Figure 1) creates a scenario in which participants assume that they are taking the role of
job seekers. Participants click on links or forward/back icons and then bookmark as many
web pages as possible. If participants solve this task, it is assumed that they can identify
problem goals and operate technology applications. Three proficiency levels of PSTRE
in total were distinguished in the PIAAC 2012 and 14 tasks were distributed over three
difficulty levels (Organisation for Economic Co-operation and Development (OECD) 2019).
More challenging tasks have higher difficulty levels: three, seven, and four tasks were at
difficulty levels 1, 2, and 3 correspondingly. All participants finished each PSTRE module
within 30 min. The order of tasks within each module and that of the modules were always
the same. Participants were not allowed to return to a former task after finishing it.
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Figure 1. This is an exemplary problem-solving item in TRE. From Job Search Part I, by (Organisation
for Economic Co-operation and Development (OECD) n.d.) (https://piaac-logdata.tba-hosting.de/
public/problemsolving/JobSearchPart1/pages/jsp1-home.html) (accessed on 11 August 2021).

2.3. Scoring
2.3.1. Task Rubric and Scoring

According to the PIAAC technical report (Organisation for Economic Co-operation
and Development (OECD) 2016), it is based on predefined scoring rubrics to grade par-
ticipants’ responses. As shown in Table 2, task scores are of mixed formats: eight tasks
were dichotomously scored (i.e., correct, incorrect), and six tasks were polytomously scored
(i.e., full, partial, no credit).

Table 2. Scoring Types and Scores of the 14 Tasks.

Task Type Scores

1 P 0, 1, 2, 3
2 D 0, 1
3 P 0, 1, 2, 3
4 D 0, 1
5 P 0, 1, 2, 3
6 D 0, 1
7 D 0, 1
8 D 0, 1
9 P 0, 1, 2, 3
10 D 0, 1
11 D 0, 1
12 P 0, 1, 2
13 D 0, 1
14 P 0, 1, 2, 3

Note: D indicates the task is dichotomously scored. P denotes the task is polytomously scored.

https://piaac-logdata.tba-hosting.de/public/problemsolving/JobSearchPart1/pages/jsp1-home.html
https://piaac-logdata.tba-hosting.de/public/problemsolving/JobSearchPart1/pages/jsp1-home.html
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2.3.2. Behavioral Indicators Scoring

To address our research questions, planning duration and interaction frequency were
extracted as behavioral indicators from log file data for the 14 PSTRE tasks in the PIAAC
2012. We used the time between participants’ view of the task and their first interaction
as a measure of planning duration for one task. Thus, we had 14 measures of planning
duration for each participant. Table 3 shows the descriptive statistics of these measures
ranging from 0 to 16.28 min. The mean planning duration ranges from 0.26 min (SD = 0.19)
to 0.82 min (SD = 0.49) for the 14 tasks. Planning durations of all tasks are almost normally
distributed based on skewness values ranging from 0.72 to 1.90 (George and Mallery 2010)
except for the eighth task with a skewness value of 11.72. The extremely long planning
duration (16.28 min) may explain its highly skewed distribution.

Table 3. Descriptive Statistics of Planning Duration Indicator for 14 Tasks.

Task
Planning Duration (minutes)

M SD Min Max Skewness

1 0.56 0.34 0.00 2.51 1.52
2 0.48 0.28 0.00 1.68 0.72
3 0.38 0.25 0.00 1.75 1.10
4 0.72 0.49 0.00 5.47 1.70
5 0.57 0.56 0.00 3.86 1.90
6 0.82 0.49 0.00 2.96 0.95
7 0.33 0.25 0.00 1.39 1.03
8 0.52 0.38 0.00 16.28 11.72
9 0.26 0.19 0.00 1.16 1.13
10 0.43 0.28 0.00 1.65 0.90
11 0.79 0.62 0.00 3.58 1.58
12 0.54 0.37 0.00 2.03 0.78
13 0.55 0.29 0.00 1.90 0.89
14 0.39 0.24 0.00 1.42 0.80

For the behavioral indicator of interaction frequency, we calculated the ratio of the
total number of human–computer interactions to the overall timing of interactions. The
ratio was used because it normalizes the number of interactions for the timing. In addi-
tion, the ratio corresponds to core features that can distinguish different problem-solving
styles effectively. The Appendix A displays a sample log data file that records sequences
of actions undertaken by one participant of the PIAAC 2012. The log data file contains
four variables associated with the problem-solving process in TRE. The “Item Name”
variable indicates which task it is. Both the “Event Name” and “Event Type” variables ex-
plain behavioral events, which may be either system-generated (e.g., START, NEXT_ITEM,
and END) or respondent-generated (e.g., CONFIRMATION_OPENED, MAIL_VIEWED,
FOLDER_VIEWED). The “Timestamp” variable is the behavioral event time for the task
given in milliseconds since the beginning of the assessment. We can infer that the respon-
dent spent 0.24 min planning solutions and 2.94 min interacting with the task. Note that the
overall timing of interactions is the duration from the first event to the end of the task (i.e.,
2.94 min) instead of the overall timing of solving the problem (i.e., 3.18 min). Given that
the total number of interactions was 45, the interaction frequency for this participant on
the first task was 15.31 times/min. Similarly, we had 14 measures of interaction frequency
for each respondent. As presented in Table 4, the mean interaction frequency ranged from
5.56 times/minute (SD = 3.30) to 18.53 times/minute (SD = 9.43). The skewness values
show that the interaction frequencies for all tasks are normally distributed (George and
Mallery 2010). It should be noted that the values of planning duration and interaction
frequency did not share a common measurement scale. We thus rescale both variables
using their ranges to compensate for the effect that different variations of planning du-
ration and interaction frequency had on the following analysis (i.e., k-means clustering,
(Henry et al. 2005)) results.
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Table 4. Descriptive Statistics of Interaction Frequency Indicator for the 14 Tasks.

Task
Interaction Frequency (times/minute)

M SD Min Max Skewness

1 18.53 9.43 0.00 103.65 0.19
2 16.46 8.03 0.00 42.09 −0.30
3 11.25 6.42 0.00 34.55 0.25
4 8.27 5.74 0.00 28.85 0.99
5 10.87 9.45 0.00 86.26 1.29
6 5.56 3.30 0.00 20.19 1.30
7 6.36 3.97 0.00 20.67 0.60
8 11.48 4.96 0.00 27.38 −0.28
9 17.11 10.59 0.00 58.27 0.05

10 10.96 6.67 0.00 33.27 0.47
11 18.25 10.15 0.00 50.40 0.31
12 6.75 5.12 0.00 25.43 0.72
13 8.21 3.56 0.00 19.18 −0.03
14 12.85 7.08 0.00 46.10 0.45

2.4. Data Analysis

We first conducted k-means clustering with planning durations and interaction fre-
quencies to categorize participants into different problem-solving styles groups. k-means
clustering is one of the simplest learning algorithms for sample clustering. Using k-means
clustering, one must first fix prior k-centroids and then assign each observation to the
cluster associated with its nearest centroid (Jyoti and Singh 2011). We chose this algorithm
for two reasons: first, the results of k-means clustering analysis are feasible to interpret
because clusters can be distinguished by examining what respondents in each cluster have
in common regarding their behavioral patterns; second, k-means clustering is efficient in
terms of running-time even with a large number of participants and variables, which ren-
ders applications in large-scale assessments likely (He et al. 2019). One challenge to k-means
clustering is to figure out the number of clusters in advance. We applied the average silhou-
ette method to determine the optimal number of clusters (e.g., Kaufman and Rousseeuw
1990). Specifically, the average silhouette method calibrated the silhouette width to measure
the difference between within-cluster distances and between-cluster distances. Kodinariya
and Makwana (2013) compared six methods to automatically generate the optimal number
of clusters, among which the average silhouette method had been recommended because it
best improved the validation of the analysis results (Kaufman and Rousseeuw 1990). We
thus employed the largest average silhouette width over different ks to identify the best
number of clusters. Additionally, we used the NbClust method (Charrad et al. 2014) to
validate the result from the average silhouette method. The NbClust method aims to gather
all available indices of a data set (i.e., 30 indices), as presented by Charrad et al. (2014), to
generate the optimal number of clusters. Using different combinations of cluster numbers,
distance measures, and clustering methods, the NbClust method outputs a consensus on
the best number of clusters for the data set.

k-means clustering employing the average silhouette method was first implemented
using the package factoextra (Kassambara and Mundt 2020) in R (R Core Team 2022). We
then used the NbClust package to validate the number of clusters from the average silhouette
method. Next, the average scores on planning duration (i.e., 14 indicators) and interaction
frequency (i.e., 14 indicators) were compared across clusters by one-way analysis of variance
(ANOVA) separately to verify Acting/Reflecting styles in TRE, which was conducted using
the dplyr package (Hadley Wickham et al. 2021) in R (R Core Team 2022).

EIRM was finally applied to understand the association between participants’ problem-
solving styles derived from the k-means clustering analysis and their performance on PSTRE
and how consistent the association was across multiple item difficulty levels. Unlike tradi-
tional item response theory models that solely focus on the difficulty levels of individual
items, EIRM allows task-level and person-level features as well as their interactions to be
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incorporated into measurement models in order to explain the variation in task difficulties
(De Boeck and Wilson 2004). This study employed a series of EIRM analyses, in which
individuals’ problem-solving styles identified by the k-means clustering were the person-
level predictors, and task difficulty levels were the task-level predictors of participants’
likelihood of completing the tasks correctly. We compared model fit indices and model
variable coefficients to identify the most desired problem-solving style in TRE for partici-
pants. All EIRM analyses were implemented using the package eirm (Bulut 2021; Bulut et al.
2021) within the R computing environment (R Core Team 2022). Tasks with varying num-
bers of response categories were handled by the polyreformat function of the eirm package.
Specifically, the polyreformat function transforms dichotomous and polytomous responses
into a series of dummy-coded responses (Bulut et al. 2021). Figure 2 demonstrates how
polytomous (i.e., task 1) and dichotomous response categories (i.e., task 2) are dichotomized
in the new data set. For example, if a respondent had the response category of 3 for task 1,
then the dummy-coded responses for this polytomous response would be 1 for 2–3 and
missing (i.e., NA) for 0–1 and 1–2. If the respondent had the response category of 1 for
task 2, then the dummy-coded responses for this dichotomous response would be 1 for
0–1, 0 for 1–2, and missing (i.e., NA) for 2–3. This series of dummy-coded responses can be
performed with EIRM analyses together.
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3. Results
3.1. Are Acting and Reflecting Styles Applicable to Describe Problem-Solving Styles in TRE by
Examining Planning Duration and Interaction Frequency?

We first used the average silhouette method to find the optimal number of clusters for
the rescaled data. Figure 3 depicts the relationship between the average silhouette width
and the cluster number ranging from one to ten. The three-cluster solution had the greatest
silhouette width, suggesting that participants should be clustered into three groups based
on their planning duration and interaction frequency on the 14 PSTRE tasks.
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To validate the three-cluster solution, we employed the NbClust method to generate
a consensus on the optimal number of clusters for the data set. Figure 4 showed that the
three-cluster solution was the one that was supported by most indices (i.e., 17).
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Figure 4. The optimal number of clusters suggested by the majority rule of the NbClust package for
the two behavioral indicators.

To understand behavioral profiles for the three clusters, rescaled scores on planning
duration and interaction frequency across the three clusters were shown in Figure 5. The
larger the values were, the longer the planning duration or the higher interaction fre-
quency that participants initiated. The mean rescaled scores on planning duration are
0.45 (SD = 0.06), −0.22 (SD = 0.08), and −0.59 (SD = 0.33) and the mean rescaled scores on
interaction frequency are −0.24 (SD = 0.08), 0.46 (SD = 0.10), and −0.92 (SD = 0.27). Cluster
1 suggests the highest rescaled score on planning duration, but a lower rescaled score on
interaction frequency, indicating that members of this cluster spent a particularly long
time in action planning and did not devote much to the interaction with technology-based
problems. In contrast, cluster 2 indicates the highest rescaled score on interaction frequency,
but a lower rescaled score on planning duration, revealing that participants spent less time
on setting up plans while actively interacting with TRE. Unlike clusters 1 and 2, cluster 3
suggests the lowest rescaled scores of both planning duration and interaction frequency.
That is, respondents in cluster 3 barely spent time making plans before the operations
that followed, and they were less frequently interacting with problem-solving tasks to
solve problems.
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As shown in Table 5, of the participants, 2993 (39.82%), 3522 (46.86%), and 1001
(13.32%) were in clusters 1, 2, and 3, respectively. The mean values of planning dura-
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tion and interaction frequency of the three clusters were also presented in Table 5. That
is, solvers’ planning duration for each PSTRE task was found to be 41.06 s for cluster
1 and decreased progressively to 26.70 and 19.50 s for clusters 2 and 3. The magni-
tude of interaction frequency for cluster 3 (5.14 times/min) was found to be lowest in
comparison with cluster 1 (10.04 times/min) and cluster 2 (14.84 times/min). Two one-way
ANOVAs were performed with solvers’ clusters as the independent variable. Results indi-
cated that differences in both behavioral indicators were significant across the three clusters,
F(2, 7513) = 4401, p < 0.001, eta-squared = 0.540 and F(2, 7513) = 7609, p < 0.001, eta-squared = 0.670.
Post hoc comparisons using the Tukey HSD method indicated that the planning duration
of cluster 1 was the longest and the interaction frequency of cluster 2 was the highest
among the three clusters. Thus, the behavioral patterns of clusters 1 and 2 were consistent
with how individuals with Reflecting and Acting styles are expected to perform in TRE.
We defined the problem-solving style of Cluster 3 as Shirking given its shortest planning
duration and lowest interaction frequency.

Table 5. Summary of Two Behavioral Indicators of Each PSTRE Task for Three Clusters.

Cluster ID N Planning Duration (s) Interaction Frequency (times/min)

1 2993 41.06 10.04
2 3522 26.70 14.84
3 1001 19.50 5.14

3.2. How Problem-Solving Styles Are Associated with Participants’ Performance in PSTRE and
How Does Task Difficulty Level Moderate Their Relationship?

To understand how task difficulty levels moderate the relationship between identified
problem-solving styles in TRE and individual problem-solving performance, we conducted
a series of EIRM analyses.

Model 0 represents the baseline model in which the only predictor was task difficulty
levels at the task level. Difficulty scores of the 14 tasks reported by Organisation for
Economic Co-operation and Development (OECD) (2019) were presented in Appendix B.
We noted that tasks at the same difficulty level have close difficulty scores, while tasks at
different difficulty levels differ greatly in their difficulty scores. The average difficulty score
of tasks at difficulty level 2 (i.e., 311.7) lay outside of three standard deviations of the average
difficulty score of tasks at difficulty level 1 (i.e., 274.0). It is the same when comparing
tasks at difficulty level 3 with those at difficulty level 2. These pieces of information can
corroborate Model 0. Model 1, as compared to Model 0, includes problem-solving styles
as an additional predictor at the personal level. Lastly, Model 2 further incorporated the
interaction between task difficulty and problem-solving style. The estimated parameters
of Models 0, 1, and 2 are shown in Table 6. The baseline model (Model 0) shows that
the estimated coefficients for task difficulty levels (TDL) are aligned with the PIAAC’s
categorization of task difficulty, where level 1 represents the easiest tasks (b = −0.53) and
level 3 indicates the hardest tasks (b = 1.92). The next model, Model 1, compared the three
clusters with different problem-solving styles: when compared with the Reflecting group
(reference category), participants with the problem-solving style of Shirking were less likely
to solve PSTRE tasks correctly (OR = 0.17; 83% less likely), whereas participants with
the problem-solving style of Acting had a much higher chance of conducting the PSTRE
tasks correctly (OR = 1.58; 58% more likely). The final model, Model 2, included two-way
interactions between problem-solving styles and task difficulty levels. The interaction
effects were statistically significant, but very small in magnitude, suggesting that task
difficulty did not strongly moderate the relationship between problem-solving styles and
participants’ likelihood of solving TRE-related tasks. To directly compare the Shirking and
the Acting group, we built another model (i.e., Model 1_Acting) including problem-solving
styles as a predictor at the personal level and task difficulty levels as a predictor at the task
level. Model 1_Acting is different from the current Model 1 because the control group in
Model 1_Acting is Acting rather than Reflecting. We thus obtained the contrast between the
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Shirking and the Acting style: participants with the problem-solving style of Acting were
more likely to solve PSTRE tasks correctly in comparison with those with the Shirking style
(z = 63.70, p < 0.001). Given that Model 1_Acting was built to compare the Shirking and
the Acting style, we did not include the results of Model 1_Acting in Table 6 to keep EIRM
analysis results in their current flow.

Table 6. A summary of EIRM results for Model 0, Model 1, and Model 2.

Model 0 Model 1 Model 2

b SE Z OR b SE Z OR b SE Z OR

TDL 1 −0.53 0.02 28.06 0.59 −0.59 0.02 29.12 0.55 −0.57 0.02 23.32 0.57
TDL 2 0.33 0.01 −24.25 1.39 0.34 0.01 −22.68 1.41 0.34 0.02 −21.26 1.41
TDL 3 1.92 0.02 −87.94 6.82 1.94 0.02 −86.20 6.96 1.92 0.03 −71.49 6.82

Shirking −1.75 0.03 −55.33 0.17 −1.93 0.05 −37.74 0.15
Acting 0.46 0.02 29.42 1.58 0.56 0.03 17.69 1.75

TDL 2*Shirking −0.34 0.06 5.43 0.71
TDL 3*Shirking −0.02 0.11 0.14 0.98
TDL 2*Acting 0.12 0.04 −3.32 1.13
TDL 3*Acting 0.14 0.04 −3.27 1.15

Note: TDL = task difficulty level; TDL 2 or 3 indicates tasks locating difficulty level 2 or 3; Shirking and Acting
were compared to the style of Reflecting. OR = Odds-ratio. All the estimated coefficients except for TDL 3*Shirking
were statistically significant at α = .001 or α = .01.

Table 7 shows a summary of the three explanatory item response models. The models
were compared using the relative model fit indices of the Akaike Information Criterion
(AIC; Akaike 1987) and Bayesian Information Criterion (BIC; Schwarz 1978). The model
fit indices indicated that Model 2 had the best fit with the smallest AIC and BIC values.
Since Models 0 and 1 were nested within each other, a direct comparison between the
models was made using the likelihood ratio (LR) test. Given the significant improvement in
model fit (D = 5827, p < 0.001) and a large reduction in residual variance (0.24) from Model
0 to Model 1, we could statistically infer participants’ problem-solving styles explained
their PSTRE performance. Similarly, the LR test between Model 1 and Model 2 was also
significant (D = 59.4; p < 0.001). However, residual variance did not change from Model 1
to Model 2, indicating that the interaction effects included in Model 2 did not contribute to
the model significantly. These results suggest that the advantageous effect of the Acting
style and the disadvantageous impact of the Shirking style on PSTRE performance were
consistent regardless of how difficult PSTRE tasks were.

Table 7. Overview of the estimated explanatory item response theory models.

Model
Predictors

AIC BIC Variance
LR Test

Task Person Interaction df D Comparison

Model 0 TDL 161,860 161,959 0.42
Model 1 TDL PSS 156,037 156,156 0.18 2 5827 *** with Model 0
Model 2 TDL PSS TDL * PSS 155,986 156,144 0.18 4 59.4 *** with Model 1

*** p < 0.001. Note: TDL = Task difficulty level; PSS = Problem-solving style; AIC = Akaike Information Criterion;
BIC = Bayesian Information Criterion; D = Deviance; LR = Likelihood ratio.

4. Discussion

This study aimed to develop a novel understanding of what types of problem-solving
styles humans exhibit in TRE using log file data and how the styles identified are associated
with humans’ performance in TRE. The results disclosed three types of problem-solving
styles in TRE: Acting, Reflecting, and Shirking. We also found the superiority of the Acting
style as well as the inferiority of the Shirking style for technology-based problem solving,
irrespective of problem difficulties.

Our results contribute to the current literature in several ways. First, the presence of
the Acting and Reflecting styles provides new evidence to support that learning modes are
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associated with humans’ dispositions to solve problems in TRE. We found that some partic-
ipants prefer to be involved in operations and explorations with problem environments,
while others prefer to observe rather than act in technology-based problem scenarios. These
inclinations are aligned with participants’ preference for action (i.e., Acting) or reflection
(i.e., Reflecting) when they process information (Kolb and Kolb 2009; Richmond and Cum-
mings 2005). This is likely because information processing is commonly involved in the
problem-solving process (Reed and Vallacher 2020; van Gog et al. 2020). As Simon (1978)
argued, the problem-solving process can be understood from an information-processing
perspective. Thus, learning modes could serve as a stepping stone to understanding and
profiling participants’ dispositions towards problem solving in TRE.

Second, the Shirking style expands our knowledge of humans’ dispositions towards
problem solving in TRE. The participants adhering to the style of Shirking displayed a
behavioral preference of scarcely pondering at the beginning of problem solving and barely
exploring a problem scenario during the problem-solving process. Unlike the Acting and
Reflecting styles, the Shirking style is a newly emergent style that describes participants’
avoidance of planning and actions in problem solving in TRE (D’Zurilla and Chang 1995;
Shoss et al. 2016). To construct a deeper understanding of the Shirking style, we examined
the average response time of the three style groups and found that the Shirking style group
spent less time (1.19 min) than those with the Acting style (2.95 min) or Reflecting style
(2.51 min). However, the average response time was far longer than five seconds, which
was used as a constant threshold for the minimum amount of time needed to validly
respond to a task (e.g., Goldhammer et al. 2016; Wise and Kong 2005). In this respect, the
Shirking style is different from disengaged test-taking behavior, though being disengaged
is common in low-stakes assessments, such as the PIAAC 2012 (Goldhammer et al. 2016;
Ulitzsch et al. 2021). Since various factors (e.g., cognition and personality) may impact
how people respond to technology-based problems (Feist and Barron 2003), future studies
should collect more data to explore what factors are associated with the presence of the
three problem-solving styles in TRE.

Third, by comparing the three problem-solving styles, we are able to better understand
the role of early planning and explorations in problem solving in TRE. Participants with
an Acting style outperformed the other participants in problem solving in TRE, which
confirms the assertion that actively initiating action may be a requisite for solving problems
(Kolb and Fry 1975). When participants explore problem scenarios, including intuitive
trial and error and stable routines within simulated computer platforms, they would gain
the necessary information for problem solving, and thus enhance their chances of finding
correct solutions (Liu et al. 2011). Eichmann et al. (2019) suspected that challenging tasks
may require tryouts before meaningful planning. In this study, we found that participants
with the Reflecting style were able to solve problems at difficulty levels 1 and 2, while those
with the Acting style were able to solve more challenging problems, at all difficulty levels
1–3. This finding indicates that persistent trials play a more critical role than early planning
in conducting difficult tasks. Further, in this study, the Acting style group differed from
the Reflecting style group in the rescaled interaction frequency (0.73 higher) and planning
duration (0.79 lower), indicating that high interaction frequency might make up for a short
planning duration when participants solved technology-related problems, not vice versa.

We also noted some limitations of the present study. First, we did not explore partic-
ipants excluded from this study due to outliers. Removed participants might take time
to think or plan but finally skip an item. Furthermore, excluded participants might give
up or abandon any explorations at the beginning of an item. These patterns barely reveal
individuals’ problem-solving styles in TRE, which have been defined as dispositions re-
garding how they are inclined to interact with surrounding technology environments in
this study. However, their relationship to motivation when participants performed the
low-stakes PSTRE assessment could be investigated in future studies. Second, it is actually
not known how the time between participants’ view of a task and their first interaction is
actually used for planning. Eichmann et al. (2019) used the duration of the longest interval
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between two successive interactions to define planning. However, Albert and Steinberg
(2011) argued that individuals complete their initial planning phase before taking their first
interaction with a task. Thus, additional work is needed to further explore the mapping of
implicit planning processes. Third, we only abstracted planning duration and interaction
frequency from log files corresponding to the Acting and Reflecting styles. Other learning
styles described in ELT, such as Feeling and Thinking, were not included. Thus, this study
partially confirms the applicability of ELT in describing problem-solving styles in TRE.
Future research may include additionally detailed behavioral and/or cognitive information
so that other styles and their potential link with PSTRE performance can be figured out.
Fourth, this study only examined interaction effects between problem-solving styles and
task difficulty levels on participants’ performance, so future studies could include other
critical cognitive factors, such as respondents’ literacy and numeracy ability. As suggested
by Xiao et al. (2019), cognitive factors may interact with participants’ problem-solving styles
and collectively act on individuals’ problem-solving performance in TRE. Future studies
could continue to explore potential interactions using the present research framework.

To summarize, this study provides critical evidence for the dominant role of active
explorations in solving technology-based problems. The participants were adults so the
knowledge generated in this study would help improve adult education programs, as well
as computer-assisted problem-solving practice systems. As Ibieta et al. (2019) indicated,
providing more detailed and specific cues (e.g., if you need to view emails, please click
on this button) to facilitate participants’ explorations and operations may be an effective
approach in improving adults’ problem-solving proficiency in TRE.
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Appendix A

Table A1. An Exemplary Log File Data Including Events and Timestamps.

Item Name Event Name Event Type Timestamp

U23x000S taoPIAAC START 0
U23x000S taoPIAAC NEXT_INQUIRY 14,449
U23x000S taoPIAAC NEXT_BUTTON 14,449
U23x000S stimulus CONFIRMATION_OPENED 14,452
U23x000S taoPIAAC BUTTON 14,454
U23x000S taoPIAAC DOACTION 14,454
U23x000S stimulus BUTTON 24,235
U23x000S stimulus CONFIRMATION_CLOSED 24,236
U23x000S stimulus DOACTION 24,236
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Table A1. Cont.

Item Name Event Name Event Type Timestamp

U23x000S stimulus MAIL_VIEWED 44,710
U23x000S stimulus MAIL_VIEWED 75,883
U23x000S stimulus MAIL_VIEWED 82,687
U23x000S stimulus MAIL_VIEWED 90,234
U23x000S stimulus MAIL_VIEWED 95,535
U23x000S stimulus MAIL_VIEWED 102,879
U23x000S stimulus MAIL_VIEWED 117,178
U23x000S stimulus MAIL_VIEWED 125,317
U23x000S stimulus MAIL_VIEWED 128,700
U23x000S stimulus FOLDER_VIEWED 141,563
U23x000S stimulus MAIL_DRAG 149,706
U23x000S stimulus MAIL_VIEWED 151,488
U23x000S stimulus TOOLBAR 165,881
U23x000S stimulus ENVIRONMENT 165,883
U23x000S stimulus DOACTION 165,883
U23x000S stimulus DOACTION 165,884
U23x000S stimulus DOACTION 165,884
U23x000S stimulus DOACTION 165,885
U23x000S stimulus TOOLBAR 167,934
U23x000S stimulus ENVIRONMENT 167,936
U23x000S stimulus DOACTION 167,936
U23x000S stimulus DOACTION 167,941
U23x000S stimulus DOACTION 167,942
U23x000S stimulus DOACTION 167,943
U23x000S stimulus TOOLBAR 171,676
U23x000S stimulus ENVIRONMENT 171,677
U23x000S stimulus DOACTION 171,677
U23x000S stimulus DOACTION 171,678
U23x000S stimulus DOACTION 171,679
U23x000S stimulus DOACTION 171,679
U23x000S stimulus TOOLBAR 173,631
U23x000S stimulus ENVIRONMENT 173,633
U23x000S stimulus DOACTION 173,633
U23x000S stimulus DOACTION 173,633
U23x000S stimulus DOACTION 173,634
U23x000S stimulus DOACTION 173,634
U23x000S stimulus TEXTLINK 182,570
U23x000S stimulus HISTORY_ADD 182,727
U23x000S taoPIAAC NEXT_INQUIRY 188,529
U23x000S taoPIAAC NEXT_BUTTON 188,529
U23x000S stimulus CONFIRMATION_OPENED 188,532
U23x000S taoPIAAC BUTTON 188,538
U23x000S taoPIAAC DOACTION 188,538
U23x000S stimulus BUTTON 190,901
U23x000S stimulus CONFIRMATION_CLOSED 190,902
U23x000S taoPIAAC NEXT_ITEM 190,904
U23x000S taoPIAAC END 190,905
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Appendix B

Table A2. Difficulty Scores and Difficulty Levels of the 14 Tasks (Organisation for Economic Co-
operation and Development (OECD) 2016).

Task Difficulty Score Difficulty Level Difficulty Range Average (SD)

1 286
1 268 to 286 274.0 (10.39)10 286

11 268

2 299

2 296 to 325 311.7 (11.57)

4 316
7 325
8 305

12 296
13 320
14 321

3 346

3 342 to 374 354.2 (14.24)
5 374
6 342
9 355
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