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Abstract
Early detection of risk of failure on interactive tasks comes with great potential for better understanding how examinees
differ in their initial behavior as well as for adaptively tailoring interactive tasks to examinees’ competence levels. Drawing
on procedures originating in shopper intent prediction on e-commerce platforms, we introduce and showcase a machine
learning-based procedure that leverages early-window clickstream data for systematically investigating early predictability
of behavioral outcomes on interactive tasks. We derive features related to the occurrence, frequency, sequentiality, and
timing of performed actions from early-window clickstreams and use extreme gradient boosting for classification. Multiple
measures are suggested to evaluate the quality and utility of early predictions. The procedure is outlined by investigating
early predictability of failure on two PIAAC 2012 Problem Solving in Technology Rich Environments (PSTRE) tasks. We
investigated early windows of varying size in terms of time and in terms of actions.We achieved good prediction performance
at stages where examinees had, on average, at least two thirds of their solution process ahead of them, and the vast majority
of examinees who failed could potentially be detected to be at risk before completing the task. In-depth analyses revealed
different features to be indicative of success and failure at different stages of the solution process, thereby highlighting the
potential of the applied procedure for gaining a finer-grained understanding of the trajectories of behavioral patterns on
interactive tasks.

Keywords Interactive tasks · Early prediction · Extreme gradient boosting · Time-stamped action sequences ·
Clickstreams · PIAAC

Introduction

Interactive tasks mirror dynamic, real-life environments,
aiming at a more realistic assessment of what examinees
know and can do. Prominent examples for these environ-
ments are the simulated email, web pages, and spreadsheet
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environments employed in the Programme for the Interna-
tional Assessment of Adult Competencies (PIAAC; OECD,
2013) to measure problem solving in technology-rich envi-
ronments (PSTRE), or the interactive problem-solving tasks
administered in the Programme for International Student
Assessment 2012 (PISA; OECD, 2014). Being computer-
administered, assessments using interactive tasks support
logging clickstream data in the form of time-stamped action
sequences, documenting the type, order, and timing of
the actions examinees executed when trying to solve the
given tasks. This rich source of additional data comes with
great potential for a nuanced understanding of response
processes, and allows to move from investigating whether
to how examinees solved a task (Greiff, Wüstenberg, &
Avvisati, 2015), for instance, by identifying typical strate-
gies (e.g. He, Borgonovi, & Paccagnella, 2021; Ulitzsch
et al., 2021b; Vista, Care, & Awwal, 2017; Wang, Tang, Liu,
& Ying, 2020; Zhu, Shu, & von Davier, 2016) or investi-
gating which behavioral patterns distinguish success from
failure on a task (e.g. Han, He, & von Davier, 2019; He &
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von Davier, 2015; Qiao & Jiao, 2018; Salles, Dos Santos, &
Keskpaik, 2020).

In this study, we introduce a procedure for systematically
investigating whether and how early performed actions as
well as the time required for their execution already contain
sufficient information for predicting the outcome of exami-
nees’ behavioral trajectories, that is, success or failure, and
for identifying examinees at risk of failure before they com-
plete the task. To this end, we make use of early-window
clickstream data, i.e., time-stamped action sequences com-
prising only initially performed actions and the associated
time stamps. We consider predictions to be useful if accurate
predictions can be achieved at stages where the major-
ity of examinees have the greater part of their solution
process still ahead of them and the majority of exami-
nees who failed could potentially be detected to be at risk
before completing the task. Investigating early predictability
comes with great potential for a finer-grained understand-
ing of how examinees approach interactive tasks and may
potentially aid in improving the testing procedure. More
specifically, first, investigating early-window clickstream
data may improve our understanding of behavioral pat-
terns of early interactions with interactive tasks (e.g., initial
exploration or planning behavior) that distinguish behav-
ioral trajectories of examinees succeeding or failing on a
task. This knowledge can then be used to refine theories
on test-taking behavior or be employed in interventions that
aid students in improving their skills for initial exploration
of complex problem-solving tasks. Second, such analyses
support investigating whether it is possible to dynamically
track examinees’ risk of failure as they interact with the
task. Once risk of failure can reliably be inferred from early
interactions, this knowledge may—when combined with a
good understanding of the sources of failure—be put into
action by providing early support in real time such as hints
or reformulations of the task that may aid examinees at risk
of failing to successfully complete the task.

Although rarely encountered in the context of interactive
tasks, the objective of predicting behavioral outcomes from
early-window clickstream data is not unknown in the behav-
ioral sciences and has been successfully addressed in various
applications, ranging from predicting grades or dropout from
early uses of online learning management systems (e.g.
Baker, Lindrum, Lindrum, & Perkowski, 2015; Lykourent-
zou, Giannoukos, Nikolopoulos, Mpardis, & Loumos,
2009; Mongkhonvanit, Kanopka, & Lang, 2019; White-
hill, Williams, Lopez, Coleman, & Reich, 2015) to pre-
dicting purchase events from early browsing behavior on
e-commerce platforms (e.g. Awalkar, Ahmed, & Nevrekar,
2016; Hatt & Feuerriegel, 2020; Requena, Cassani, Tagli-
abue, Greco, & Lacasa, 2020; Toth, Tan, Di Fabbrizio, &
Datta, 2017). In the present study, we build on these pre-
viously applied procedures for early-window clickstream

data and explore whether and how they can be adapted to
the context of early prediction of behavioral outcomes on
interactive tasks in general and failure in particular.

In what follows, we first review previous research
on using process data to better understand behavioral
patterns differentiating correct from incorrect responses.
Subsequently, we provide a short overview on approaches
to early prediction of shopper intent on e-commerce
websites. We then use these approaches as a blueprint and
starting point for introducing a procedure for systematically
investigating early predictability of behavioral outcomes on
interactive tasks. The procedure is outlined by assessing
early predictability of failure on two tasks from the
PIAAC PSTRE domain. Finally, we discuss implications
and identify potentials for future work.

Using clickstream data to differentiate correct
from incorrect responses

Posing a rich description of how examinees attempted
the administered tasks, clickstream data from computer-
based interactive tasks have recently gained much attention
in psychometrics, psychology, and educational sciences.
Within this stream of research, both theory-driven and
exploratory approaches to investigating behavioral patterns
related to success and failure on interactive tasks emerged.
Herein, however, the predominant aim has been to
investigate behavioral patterns rather than to predict
behavioral outcomes.

Theory-driven approaches Theory-driven approaches com-
monly aim at corroborating theories on solution and test-
taking behavior. Based on subject-matter theory, click-
stream data are used for the construction of behavioral
indicators. Examples for such indicators are the applica-
tion of specific strategies (such as vary-one-thing-at-a-time,
VOTAT; Greiff et al., 2015; or other expert-defined strate-
gies as in Hao, Shu, & von Davier, 2015; He, Borgonovi, &
Paccagnella, 2019), the degree of automation of procedural
knowledge as indicated by the time spent on automatable
subtasks (e.g., drag-and-drop events; Stelter, Goldhammer,
Naumann, & Rölke, 2015), planning behavior as indicated,
e. g., by the time required for performing the first action
(Albert & Steinberg, 2011; Eichmann, Goldhammer, Greiff,
Pucite, & Naumann, 2019), or disengaged behavior as indi-
cated by short times spent on task and few actions (Sahin
& Colvin, 2020). Subsequently, these behavioral indica-
tors can be related to performance in order to investigate
whether the considered behaviors are related to successful
task completion as hypothesized.

Applications of theory-driven approaches have markedly
deepened the understanding and refined theories of test-
taking behavior on interactive tasks. For predicting the
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outcomes of behavioral trajectories, however, purely theory-
driven approaches are limited. First, for the construction
of theory-derived indicators, clickstreams are scanned for
occurrences of specific strategies. Hence, when prediction
rather than corroborating theories is the primary research
objective, potentially useful information is discarded.
Second, some of these indicators may be constructed only
on the basis of longer sequences and/or when the solution
process is already at more advanced stages, such that the
behavioral patterns used for indicator construction may not
often be encountered in early-window clickstream data.
VOTAT, for instance, is a complex strategy that manifests
itself in sequences of actions that may occur only in
later stages of the solution process when examinees have
acquainted themselves with the task environment.

Exploratory approaches In recent years, a plethora of
exploratory approaches to identifying features distinguish-
ing correct from incorrect clickstreams has been developed
and applied (Chen, Li, Liu, & Ying, 2019; Han et al., 2019;
He & von Davier, 2016; Qiao & Jiao, 2018; Salles et al.,
2020; Ulitzsch, He, & Pohl, 2021a). Features derived from
clickstreams comprise generic features commonly used in
sequence mining or natural language processing (e.g., n-
grams as in He & von Davier, 2015, 2016; Liao, He, & Jiao,
2019; Ulitzsch et al., 2021a), task-specific features, created
based on subject-matter knowledge on behavioral patterns
to be expected on the task (Chen et al., 2019; Salles et al.,
2020), or a combination of the two (Qiao & Jiao, 2018; Han
et al., 2019). These features are then fed to classifiers or
prediction models, or analyzed using sequence mining tech-
niques to identify features that best distinguish correct from
incorrect clickstreams.

Note that commonly the objective of such approaches is
not prediction but rather to better understand examinees’
attempts to solve the administered tasks by uncovering
key behavioral patterns that distinguish success from
failure. Aimed at gaining insights on the whole solution
process, these approaches leverage the whole of information
contained in collected clickstreams—from opening the task
to proceeding to the next one. As the actions performed on
interactive tasks are an inherent part of the solution process,
correct and incorrect clickstreams have been found to be
well distinguishable. For a PISA 2012 problem-solving
task, for instance, Qiao and Jiao (2018) reported specificity
and sensitivity of more than .90 for various classifiers
being fed n-grams extracted from action sequences.
Analyzing an interactive math item from the French Cycle
des Évaluations Disciplinaires Réalisés sur Échantillons
(subject-related sample-based assessment cycle; CEDRE),
Salles et al. (2020) obtained an area under the receiver
operating characteristic curve (AUC ROC) value of .78
from random forest analyses using theory-derived, task-

specific features. Such good performance, however, may not
necessarily be achievable for predictions based on early-
window clickstream data, which are the focus of the present
study. First, behavioral patterns distinguishing success from
failure may be encountered only at later stages of the
solution process, while differences in the very first actions,
stemming, for instance, from initial exploration behavior,
may be less pronounced. Second, information contained in
early-window clickstream data from interactive tasks may
be rather sparse. For instance, across the 14 tasks of the
PIAAC 2012 domain, average sequence length ranged from
10.8 to 96.9 (Tang, Wang, Liu, & Ying, 2020b). If we were
to predict outcomes of behavioral trajectories after what
would, on average, be the middle of the solution process,
on some tasks, predictions would need to be made on the
basis of as few as five actions and the associated timing
information.

Predictive approaches So far, the predominant goal of anal-
yses of clickstream data has been to gain a better under-
standing of behavioral patterns rather than making pre-
dictions. Nevertheless, just recently, predictive approaches
started to emerge.

Tang, Wang, He, Liu, and Ying (2020a) investigated
whether action sequence data from one PIAAC PSTRE
task can predict performance on another one. To that end,
the authors determined the discrepancy between action
sequences from each PIAAC PSTRE task by drawing on a
dissimilarity measure originating from clickstream analysis
and subsequently extracted item-specific latent features via
multidimensional scaling. Using logistic regression, the
authors then investigated whether features derived from one
task can predict success or failure on another one over
and above performance on the predicting task. For most
of the item pairs, Tang et al. (2020a) reported a marked
improvement in prediction accuracy when features were
included, highlighting the vast potential of information
contained in sequence data for predicting the performance
of examinees.

Chen et al. (2019) proposed a model-based approach for
dynamic prediction of behavioral outcomes. The authors
proposed to include features as time-varying covariates
in an event history model, which at any given time of
the solution process can be used to predict outcomes of
the solution process, i.e., success or failure as well as
time spent on the task. Their study is an important con-
tribution as it showcased and initiated the discussion on
the utility of clickstream data for dynamic predictions
of behavioral outcomes on interactive tasks. Nevertheless,
Chen et al. (2019) critically remarked that although employ-
ing a prediction model rather than using black-box machine
learning methods allows retrieving interpretable parame-
ters, it comes at the price of strong assumptions on data-
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generating processes which, given the complexity of click-
stream data, renders the model likely to “not most closely
approximate the data-generating process” (Chen et al.,
2019, p. 4), potentially yielding biased predictions. Among
others, these assumptions concern the functional form of
the relationship between considered features and behav-
ioral outcomes. Further, regression weights are assumed to
be time-invariant, implying that the considered features are
equally predictive at different stages of the solution process.
This must not necessarily be the case. Actions related to
task exploration, for instance, may be positively related to
success at early stages, capturing examinees’ willingness to
thoroughly explore the task environment, but may be indica-
tive for risk of failure at later stages of the solution process,
when such actions are no longer beneficial for successful
task completion. Analyzing a PISA 2012 problem-solving
task, Chen et al. (2019) retrieved a satisfactory AUC ROC
value of .72 only at later stages of the solution process when
the median time spent on the task had already passed, which
may be considered as a benchmark for subsequent studies.

Using early-window clickstream data for shopper
intent prediction

In fields where clickstream data is a more established
source of behavioral data, predicting behavioral outcomes
from early-window clickstream data is a common problem
statement. In the present study, we turn our attention to
procedures employed in the context of predicting behavioral
outcomes based on clickstream data from e-commerce
websites. In this vein of research, clickstream data is
commonly used for predicting whether users are at risk
for leaving the page without purchases (see Awalkar
et al., 2016; Bertsimas, Mersereau, & Patel, 2003; Hatt
and Feuerriegel, 2020; Requena et al., 2020; Toth et al.,
2017, for examples). Early detection of such risks may
trigger automated interventions, such as offering discounts
that may nudge customers into purchasing. To that end,
a plethora of supervised classifiers has been employed,
ranging from predictive models for sequential data such as
hidden Markov models (as in Hatt & Feuerriegel, 2020)
or recurrent neural networks (as in Toth et al., 2017) to
classifiers trained on features derived from clickstream
data such as extreme gradient boosting or support vector
machines (as in Requena et al., 2020). Features considered
comprise information on the action level such as uni- and
bigrams (Requena et al., 2020), aggregates such as the
number of performed clicks or the maximum time elapsed
between subsequent clicks as well as metadata such as the
day of the week when the session was initiated (Awalkar
et al., 2016). Research on predictions of behavioral
outcomes has repeatedly demonstrated that clickstream data

is well suited for making accurate predictions at relatively
early points in time based on rather sparse data.

Data structures from e-commerce websites can be
expected to resemble those encountered in interactive tasks,
rendering it worthwhile to investigate whether procedures
applied in the context of e-commerce also perform well in
the context of interactive tasks. First, interactive tasks such
as those employed in the PIAAC PSTRE domain oftentimes
mirror interfaces of web applications to evoke real-life
problem-solving behavior. Second, clickstreams from e-
commerce websites tend to be rather short. Requena et al.
(2020), for instance, based their analyses of shopper intent
prediction on browsing sessions with action sequences
of length 5 to 155, closely resembling typical ranges
encountered in clickstream data from interactive tasks.
Across all 14 tasks of the PIAAC PSTRE domain, for
instance, the minimum action sequence length was 3 and
maximum action sequence length ranged from 51 to 398
(Zhang, Tang, He, Liu, & Ying, 2021).

Due to these resemblances in typical data structures, pro-
cedures employed for investigating the early predictability
of shopper intent pose a promising tool for investigating
the early predictability of failure or success on interactive
tasks. In the present study, we draw on and adapt procedures
that have recently been employed by Requena et al. (2020)
in their systematic and exhaustive study of early shopper
intent prediction. Requena et al. (2020) created multiple
subsets of action sequences that were trimmed to all but
those actions that fell into a given early window. Next,
the authors compared the performance of multiple machine
learning algorithms on these subsets to investigate at which
point early-window action sequences contained sufficient
information to achieve accurate predictions. Among others,
Requena et al. (2020) achieved good results with extreme
gradient boosting, where AUC ROC values exceeded .70 as
soon as early action sequences were of at least length seven.

Objective and research questions

Adapting machine learning-based procedures originally
employed by Requena et al. (2020) for investigating early
predictability of shopper intent on e-commerce websites, the
present study introduces and showcases a procedure for the
systematic investigation of early predictability of behavioral
outcomes on interactive tasks in educational assessment.
When introducing the procedure, we suggest features that
may be derived from clickstream data from interactive tasks
as well as measures to be tracked that aid in evaluating
the quality and utility of early predictions. We outline the
procedure by investigating the potential of early-window
clickstream data for early prediction of risk of failure on two

1395Behavior Research Methods  (2023) 55:1392–1412

1 3



PSTRE tasks from PIAAC 2012, addressing the following
research questions:

RQ1 Establishing a baseline: How well can customary
supervised classifiers on the basis of features con-
structed from complete clickstream data, capturing
the whole solution process, identify failure on the
task?

RQ2 Investigating the accuracy of early predictions: How
early in terms of a) the number of performed actions
as well as b) elapsed time can customary supervised
classifiers on the basis of features constructed from
early-window clickstream data accurately predict
failure on the task?

RQ3 Investigating feature importance: Which features
constructed from early-window clickstream data
display the highest predictive importance at different
phases of the solution process?

Materials andmethods

Data

We made use of clickstream data from the items U23
(“Lamp Return”) and U02 (“Meeting Rooms”) from the
PIAAC 2012 PSTRE domain. In PIAAC 2012, problem-
solving items were administered with fixed positions and
without time limits. “Meeting Rooms” is located in the
middle of the second problem-solving cluster (PS2), while
“Lamp Return” is administered at the very end of PS2.
Hence, when approaching “Meeting Rooms” and “Lamp
Return”, examinees were already exposed to different
PIAAC PSTRE task environments and had the opportunity
to accumulate pre-familarity with these environments. We
chose these items as they strongly differ in their difficulty
as well as in the amount of initial task exploration required
prior to performing key actions for solving the task, both
potentially impacting early predictability. Very difficult or
very easy items yield highly imbalanced data sets which
may challenge classifiers (see, e.g., Ruisen et al., 2018).
The amount of initial task exploration required prior to
performing key actions may impact how distinguishable
early-window clickstream data associated with success
or failure are because differences in initial exploration
behavior may be less pronounced and differences in
performing key actions for solving the task may emerge
only at later stages of the solution process.

“Lamp Return” involves both web page and email
environments and requires examinees to navigate through
an online lamp shop to complete an explicitly specified
consumer transaction. To that end, examinees have to
submit a request, retrieve an email message, and fill out

an online form. Examinees receive partial credit if at
least one of the fields of the online form is filled out
correctly. Figure 1 displays an example item with email
and web environments (from the Education and Skills
Online Assessment) that shares a comparable item interface
with the PIAAC item “Lamp Return”. “Meeting Rooms”
involves email, web, and word processor environments1

and requires examinees to navigate through emails, identify
relevant requests for meeting room reservations, and
subsequently submit these meeting room requests via a
simulated online reservation site. A conflict between one
request and the existing schedule presents an impasse to be
resolved.

“Lamp Return” and “Meeting Rooms” are located at
Proficiency Levels 2 and 3, respectively,2 and, with item
difficulties of 321 and 346, respectively, pose items of
medium and high difficulty (OECD, 2013). For getting to
and filling out the lamp return form, it is not necessary
to exhaustively explore the task’s environment. As such,
the item can be solved in a rather linear manner and
only requires a minimum of 17 actions (including actions
performed for filling out the return form) for receiving
full credit (He et al., 2021). Key actions required for
successful task completion can therefore be expected to be
commonly encountered in early-window clickstream data
associated with successful task completion. This is different
for “Meeting Rooms”, which requires examinees to seek
and integrate information from multiple environments
before filling out the meeting room reservation forms.
Due to the higher necessity of initial task environment
exploration, “Meeting Rooms” requires a minimum of 25
actions for receiving full credit (He et al., 2021). Initial
task exploration is likely to be non-linear, with examinees
switching between different environments to compare and
integrate the displayed information.3 Key actions required
for successfully submitting the reservation forms may
therefore be commonly encountered only at later stages
of the solution process. Based on these consideration, we
expected early predictability for “Lamp Return” to be less
challenging than for “Meeting Rooms”.

We analyzed clickstream data from examinees from
Ireland, Japan, the Netherlands, the United Kingdom,
and the United States who were administered “Lamp

1Note that the word processor is an optional environment instead
of a compulsory one, designed to assist examinees to summarize
information extracted from the email requests.
2The PSTRE performance is defined by four levels: below Level 1 (0–
240), Level 1 (241–290), Level 2 (291–340) and Level 3 (341–500).
For more details, refer to OECD (2013).
3The manifold ways of how this initial task exploration manifests itself
in action sequences is, among others, reflected in the comparably low
similarity of sequences to expert-defined optimal strategies (He et al.,
2019).
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Fig. 1 An example item with the theme of lamp return from the Education and Skills Online Assessment, which shares the similar item interface
structure with the PIAAC PSTRE tasks. Source: https://www.oecd.org/skills/ESonline-assessment/takethetest/#d.en.367010

Return” and/or “Meeting Rooms” of the PIAAC 2012
PSTRE domain. Data from 761 and 920 examinees who
proceeded to the next task without performing any actions
on “Lamp Return” and “Meeting Rooms”, respectively,
were excluded. A total of 6,791 (“Lamp Return”) and
6,629 (“Meeting Rooms”) clickstreams were considered
for further analyses. As the objective of this study was
to identify examinees at the risk of failure, lacking the
understanding, skills, and/or motivation to fulfill at least
some of the task’s requirements, we scored partially correct
as correct. On “Lamp Return”, 3,134 of examinees who
performed at least one action failed and 3,657 (partially)
succeeded. On “Meeting Rooms”, 3,957 examinees failed
and 2,672 (partially) succeeded.

Examinees who failed in solving either “Lamp Return”
or “Meeting Rooms” spent less time on the tasks and
performed fewer actions than examinees who (partially)
succeeded. Excluding the action “Start” as well as the final
bigram 〈 “Next”, “NextOK” 〉 (proceeding to the next task

and confirming this action), the median and middle 50%
range of action sequence length on “Lamp Return” was 11
[7; 19] when associated with failure and 30 [24; 41] when
associated with (partial) success. Examinees who failed
on “Lamp Return” spent a median of 74 s with a middle
50% range of [48; 124] on the task, while examinees who
(partially) succeeded required a median of 134 s with a
middle 50% range of [102; 187] for doing so. The median
and middle 50% range of action sequence length associated
with failure and success on “Meeting Rooms” were 20 [9;
44] and 84 [66; 107], respectively. Median and middle 50%
range of time spent on “Meeting Rooms” associated with
failure and success were 117 [65; 218] and 394 [309; 518] s,
respectively.

Preprocessing

Actions that are not essential for successfully solving
the task were recoded into aggregate-level categories
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(e.g., “write email”, “explore shop’s products”, or “open
folders”). Further, we aggregated all actions that could
be performed using different tools of the simulated
environment but yielded the same result (e.g., “switch
between email and web environment”, “submit request”). In
total, this resulted in 27 categories of performable actions
for “Lamp Return” and 31 categories for “Meeting Rooms”.
Overviews of performable actions, relative frequencies
of action sequences associated with success and failure
containing the actions (sequence frequencies), absolute
frequencies of actions within each response group (action
frequencies), and median time to first occurrence are given
in Tables 1 and 2. Note that details related to filling out the
tasks’ online forms were stripped from the action sequences
as from this information the score can directly be inferred,
rendering prediction a trivial endeavor. On “Lamp Return”,

for instance, we kept information that examinees selected a
reason for their return request, but stripped information on
which specific reason they selected. Likewise, on “Meeting
Rooms”, we kept information that examinees selected a start
time on the reservation form but eliminated information
on the specific date and time. Further, we eliminated
actions related to submitting forms and requests since these
correspond to the submission of examinees’ solution prior
to proceeding to the next task.

Creating early-window subsets

For investigating early prediction of failure, we considered
early windows in terms of the number of performed actions
Wa = {1, 2, ..., 7} and elapsed time in seconds Wt =
{20, 30, 40, 50} for “Lamp Return”, and Wa = {1, 2, ..., 9}

Table 1 Description, frequencies, and median time to first occurrence of performable actions on Item U23 (“Lamp Return”) by response group

Name Description Sequence frequency Action frequency Time to first occurrence

Success Failure Success Failure Success Failure

GoToCustomerService Go to customer service 1.00 0.67 4818 2435 26 30

GoToReturnForm Go to return form 1.00 0.03 4296 125 68 50

EmailWeb Switch between email and web environment 0.92 0.53 14608 5385 54 44

BackForward Going back or forward 0.93 0.42 10315 3588 58 45

Reason State reason for returning lamp on return form 0.99 0.00 3743 8 84 91

Exchange State return modality on return form 1.00 0.00 3682 8 87 97

AuthBox Fill in authorization number on return form 0.93 0.00 25621 46 107 110

Submit Submit return form 0.93 0.00 4629 13 124 141

ObtainAuthNumber Request authorization number 0.94 0.56 13219 6015 67 46

ViewAuthMail Open email with authorization number 0.86 0.20 3771 912 92 75

Products Explore shop’s products 0.40 0.58 3811 5491 26 22

FolderView Open folder in email environment 0.35 0.15 7176 2805 70 79

CustomerServiceInfo Explore information on customer service site 0.24 0.14 1348 651 76 74

MailView Open email 0.22 0.13 9510 3396 63 65

SiteNotNeeded Pop-up window “Content not needed for task” 0.20 0.38 1873 2977 54 40

CompanyInfo Explore company information 0.18 0.15 907 686 59 56

Keystroke Perform keystroke 0.16 0.10 5378 31933 92 119

Toolbar Use toolbar 0.11 0.13 779 854 92 83

Menu Use menu 0.10 0.07 725 402 102 94

CopyPaste Copy and paste 0.06 0.01 611 104 99 117

NextCancel Cancel proceeding to next item 0.03 0.04 134 121 126 76

WriteMail Write email 0.02 0.10 618 2618 143 117

MoveEmail Move email 0.02 0.02 132 110 102 93

Bookmark Set bookmark 0.02 0.04 168 404 111 94

Help Seek help 0.02 0.04 93 160 124 95

Search Use search function 0.01 0.00 223 46 137 105

Sort Use sort function 0.00 0.00 18 14 171 144

Sequence frequency: proportion of sequences within the response group containing the action at least once; action frequency: absolute frequency
of action occurrences within the response group; time to first occurrence: median time to first occurrence in seconds within the response group
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Table 2 Description, frequencies, and median time to first occurrence of performable actions on Item U02 (“Meeting Rooms”) by response group

Name Description Sequence frequency Action frequency Time to first occurrence

Success Failure Success Failure Success Failure

MailView Open email 1.00 0.88 31403 20940 33 32

Folder view Open folder in email environment 0.70 0.79 11979 22400 41 38

EmailWeb Switch between email and web environment 1.00 0.49 44437 13624 58 64

WordProcessor Interact with word processor 0.81 0.35 8818 4631 73 74

Submit Submit request 1.00 0.22 11530 3136 228 183

GoToReservation Go to reservation site’s reservation form 1.00 0.27 37710 10902 126 105

GoToCalender Go to reservation site’s calender 0.94 0.23 22595 4955 99 97

GoToMeetingRoom Go to reservation site’s meeting room information 0.81 0.20 12192 3314 137 118

GoToUnfilled Go to reservation site’s unfilled request notice form 0.69 0.09 8467 1189 280 197

GoToHome Go to reservation site’s home 0.10 0.05 758 641 132 128

Dept Select department on reservation form 1.00 0.22 8683 1815 211 169

Room Select room on reservation form 1.00 0.22 7968 2644 195 151

StartTime Select start time on reservation form 1.00 0.22 6500 1672 195 150

EndTime Select end time on reservation form 1.00 0.22 6482 1663 199 155

ChangeDept Change department on reservation form 0.04 0.01 113 23 354 346

ChangeRoom Change room on reservation form 0.16 0.01 471 44 268 274

ChangeStartTime Change start time on reservation form 0.03 0.00 81 27 355 321

ChangeEndTime Change end time on reservation form 0.03 0.00 94 25 358 325

CancelChanging Cancel changes on reservation form 0.07 0.00 215 22 298 371

Toolbar Use toolbar 0.28 0.19 2356 2217 114 100

BackForward Going back or forward 0.23 0.08 2020 1137 162 137

Menu Use menu 0.16 0.14 892 1214 148 99

MoveMail Move email 0.16 0.29 1939 9329 123 66

NewFolder Create new folder 0.14 0.02 987 371 312 181

Keystroke Perform keystroke 0.09 0.06 24491 21776 158 122

Help Seek help 0.07 0.06 318 396 167 135

NextCancel Cancel proceeding to next item 0.05 0.03 135 110 329 119

CopyPaste Copy and paste 0.03 0.02 167 165 196 146

Bookmark Set bookmark 0.01 0.01 60 65 161 180

Sort Use sort function 0.01 0.01 62 134 85 96

Search Use search function 0.01 0.01 79 153 176 123

Sequence frequency: proportion of sequences within the response group containing the action at least once; action frequency: absolute frequency
of action occurrences within the response group; time to first occurrence: median time to first occurrence in seconds within the response group

and Wt = {20, 30, ..., 70} for “Meeting Rooms”.4 Herein,
the longest early windows considered (i.e., 7, respectively
9 actions, and 50, respectively 70 s) roughly correspond to
the first quartile of action sequence length and time spent
on task associated with failure, with the rationale being that
within these early windows, the vast majority of examinees

4We did not consider early windows of 10 s, as on “Lamp Return” only
6% and on “Meeting Rooms” only 4% of examinees performed their
first action within the first 10 s. Within the first 20 s—the shortest time-
wise early window considered—51% and 29% of examinees already
performed their first action on “Lamp Return” and “Meeting Rooms”,
respectively.

who failed could still be detected to be at risk before
completing the task. With ai and ti giving examinee i’s
action sequence length and time spent on task, for each early
window, we created a subset containing only sequences of
length ai > wa , respectively associated with ti > wt , and
trimmed clickstreams comprising the subset to the first wa

actions and the associated timing information, respectively
to those actions and the associated timing information
performed within the first wt seconds. For instance, the
wa = 4 data set contained only clickstreams of examinees
who performed a total of at least five actions, and the first
four actions and associated time stamps were employed for

1399Behavior Research Methods  (2023) 55:1392–1412

1 3



prediction. In analogy, the wt = 30 data set contained
only clickstreams associated with a time spent on task of
more than 30 s, and only those actions and associated time
stamps were employed for prediction that were performed
within the first 30 s. Each of the resulting 7 + 4 + 9 +
6 = 26 data sets was used to evaluate the predictability of
failure based on the information contained in the trimmed
clickstreams. This procedure is adapted from Requena et al.
(2020) and supports a systematic investigation of how early
behavioral outcomes (i.e., failure in the present application)
can accurately be predicted. Note that this procedure creates
subsets that not only differ in the richness of features
used for early prediction but also in the set of behavioral
trajectories of interest, as only those clickstreams exceeding
the early windows with respect to action sequence length,
respectively time spent on task, are subject to prediction. As
different subsets of behavioral trajectories are investigated
for each early-window data set, predictability must not
necessarily increase with an increasing early-window size
and increasing richness of features.

Feature extraction

We derived multiple generic features from clickstreams,
related to the occurrence, frequency, and sequentiality of
performed actions, and enriched these with features derived
from the time elapsed until the execution of specific actions.

Time to first action In the literature on problem solving,
time to first action has often been discussed as an indicator
of planning time and shown to be associated with successful
task completion (Albert & Steinberg, 2011; Eichmann et al.,
2019). We therefore included time to first action as a
time-related feature derived from subject-matter theory on
problem-solving behavior.

Action term-frequency–inverse-document-frequency weight
Occurrences of performable actions were represented as term-
frequency–inverse-document-frequency (tf-idf) weights, a
common measure employed in natural language processing
(Salton, 1975; see He & von Davier, 2015, 2016; Ulitzsch
et al., 2021a, for applications in the context of interactive
tasks). Herein, the tf-idfgi weight for action g occurring in
sequence i is determined as follows

tf-idfgi =
{

[1 + log(tfgi)] log(Nw/dfg) if tfgi ≥ 1

0 if tfgi = 0
, (1)

where dfg gives action g’s document frequency (which in
the given context corresponds to the number of sequences
g occurs in), tfgi gives the term frequency (i.e., the
number of occurrences) of action g in sequence i, and
Nw is the number of sequences in the respective early-
window data set. The weight upweighs actions occurring in

only few sequences and being associated with lower dfg ,
while dampening the multiple occurrence of actions within
the same sequence (i.e., those actions within sequence i

having a high tfgi). For illustration, let us assume that
within a given early window, Examinee 1 performed the
action “EmailWeb” (switching between the email and web
environment) tfEmailWeb1 = 3 times. Let us further assume
that there are Nw = 500 clickstreams in the early-window
data set, out of which dfEmailWeb = 300 contain the
action at least once. This results in a tf-idf weight of [1 +
log(3)] log(500/300) = 1.07 for the action “EmailWeb”
in Examinee 1’s sequence. If fewer examinees would have
performed “EmailWeb”, say dfEmailWeb = 100, this would
result in a higher tf-idf weight of 3.38.

Time to action’s first occurrence For each performed action,
we considered the time elapsed until its first occurrence
(see Tables 1 and 2 for overviews). In the case that
an action was not encountered in a given sequence, the
time to its first occurrence was coded as missing. The
inclusion of this feature follows the rationale that the time
at which a given action is executed may be indicative of
whether behavioral trajectories result in success or failure.
For instance, at the beginning of the solution process,
actions related to exploring the task environment may be
beneficial, indicating examinees’ willingness and ability to
get acquainted with the task’s requirements. At later stages
of the solution process, however, such behavior may be an
indicator of inefficient and unsystematic solution behavior
and thus of risk of failure.

Bi- and trigrams To take the sequentiality of early actions
into account, we considered bi- and trigrams, i.e., contigu-
ous subsequences of size two and three, respectively. For
these, we used a simple one-hot enconding (i.e., the fea-
ture takes the value 1 if the bi-, respectively trigram, is
contained in the early-window sequence and is set to 0 oth-
erwise). We did not consider the frequency of occurrence
of bi- and trigrams because—due to the few number of
actions performed in early windows—bi- and trigrams were
rarely encountered more than once in a given early-window
sequence. We did not include one-hot encoded unigrams, as
information on their occurrence is already contained in the
action tf-idf weights as well as in the times to the action’s
first occurrence.

Activity For early-window data sets, we considered the
time elapsed within the given early window when trimming
by the number of performed actions and the number of
performed actions within the given early window when
trimming by elapsed time. These features can be seen as
indicators of the intensity of examinees’ interactions with
the task environment within the given early window.
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Monitored descriptives

For each early-window data set, we monitored several
descriptives, aimed at describing a) how early the prediction
is performed, and b) the utility of early prediction in terms
of its capability to identify examinees to be at risk of
failure before they complete the task. Further, we tracked the
proportion correct in each early-window data set to gauge
the degree of imbalancedness of the classification problem.

Earliness We evaluated how early predictions can be
performed based on a given early window—either defined
in terms of the number of performed actions wa or in
terms of elapsed time wt—by using and adapting the
Earliness metric employed by Requena et al. (2020). For any
examinee with ai > wa and ti > wt , Earliness metrics in
terms of the number of performed actions and the elapsed
time are given by

Earlinessa(a)
i = 1 − wa

ai

(2)

and

Earlinesst (a)
i = 1 − tw

a

i

ti
, (3)

respectively, when trimming with respect to actions. The
equations change to

Earlinessa(t)
i = 1 − awt

i

ai

(4)

and

Earlinesst (t)i = 1 − wt

ti
, (5)

respectively, when trimming with respect to time. Here, tw
a

i

gives the time examinee i required for performing the first
wa actions and awt

i gives the length of examinees i’s action
sequence up to time wt . The Earliness metrics provide the
relative distance between the point at which the prediction
is performed to the end of the sequence. For instance, for
an early window in terms of the number of performed
actions of wa = 3, sequences of length ai = 4 have
Earlinessa(a)

i = .25, while sequences of length ai = 30 have

Earlinessa(a)
i = .90. For each early window, we tracked the

Earliness metrics’ medians and middle 50% ranges.

Utility for risk detection As a measure of the utility of risk
detection at a given early window, we tracked the ratio
of the number of incorrect clickstreams with ai > wa ,
respectively associated with ti > wt , to the number of
incorrect clickstreams in the complete data set. This ratio
corresponds to the proportion of examinees who failed that
could be identified to be at risk before completing the task
within the considered early window.

Classification using XGBoost

To predict the outcome of (trimmed) clickstreams, we
trained an extreme gradient boosting (XGBoost) classifier
(Chen & Guestrin, 2016). Intuitively, XGBoost combines
multiple weak learners—in the present application, classifi-
cation trees—into a strong learner by aggregating the weak
learners’ results. Our choice is motivated by XGBoost’s
track record of exceptional performance in a variety of
applications in general (Chen & Guestrin, 2016) and for the
purpose of shopper intent prediction in particular (Requena
et al., 2020). In addition, XGBoost has a built-in mechanism
for dealing with missing values, which makes it particularly
suitable for the problem at hand.

Each observation is represented by a D-dimensional
feature vector x ∈ R

D . A trained XGBoost classifier assigns
to this observation a score ŷ ∈ R, which, in turn, can be
mapped to a binary class label.

Classification process Before we turn our attention to
training XGBoost classifiers, we first describe their
classification process. An XGBoost classifier is composed
of an ensemble of classification trees whose predictions are
aggregated to reach a final decision. Figure 2 visualizes the
classification process for a single tree. Classification trees
are binary trees, where each node in the tree (except for the
leaves) is associated with a feature d ∈ {1, . . . , D} and a
threshold value δ. To classify a given observation x ∈ R

D ,
the observation traverses the binary tree, starting from the
root, until it reaches a leaf node; the resulting leaf node
will determine the classification. For traversing the tree, at
each internal node, we move to the left child of the node if
xd ≥ δ, i.e., if the value of the dth feature of the observation
is greater than the threshold value associated with the node,
and to the right child otherwise. Each leaf is associated with
a score ŷ. The sign of the score determines the class.

Fig. 2 A depiction of a classification tree. An observation is classified
by moving along the nodes of the tree depending on the values of the
respective features. The dashed line indicates the default direction to
take when the feature is missing. The leafs are associated with a score,
which, in turn, is mapped to a class label
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Once each classification tree mapped the observation
to a leaf and the associated score, the XGBoost classifier
aggregates the decision of the ensemble. Formally, the
ensemble consists of M classification trees, modeled by
a set of functions {f1, . . . , fM}, fm : R

D → R, m ∈
{1, . . . , M}. For a given observation x ∈ R

D , XGBoost
aggregates the decisions by taking the sum of the trees’
scores:

ŷ =
M∑

m=1

fm(x). (6)

To classify, the aggregated score ŷ is then mapped to a class
label.

Training Given a training set of N train
w observations X =

{x1, . . . , xN train
w

}, each associated with a binary class label
yi ∈ {0, 1}, XGBoost trains a tree ensemble sequentially.
Intuitively, the training of the mth tree aims to remedy
errors made by the previous m−1 trees. This way, XGBoost
iteratively improves (boosts) the predictor. The total number
of trees M is a hyperparameter of XGBoost models. Each
tree is trained to minimize an objective that corrects the
residual errors of the previous predictors. Tree m, 1 ≤ m ≤
M , is trained by minimizing the following objective:

N train
w∑

i=1

l(yi, ŷ
m−1
i + fm(xi)) + �(fm), (7)

where ŷm−1
i = ∑m−1

j=1 fj (xi) denotes the aggregated deci-
sion of the first m−1 trained trees, l() is a loss-function,
and �(fm) is a regularization term describing the complex-
ity of the tree. In the present study, we use a logistic loss
function. Intuitively, the complexity of a tree �(fm) is mea-
sured in terms of the magnitude of the scores assigned to the
leaves and the depth of the tree.

To train a single tree, XGBoost adds nodes to the
tree one after another, each time identifying the splitting
point that maximizes improvement in the loss function.
A splitting point is defined in terms of a feature and a
threshold value. The algorithm iteratively transforms leafs
into internal nodes until a predefined maximum depth is
reached. For a more technical description we refer the reader
to the standard literature (Chen & Guestrin, 2016).

One advantage of XGBoost is its built-in mechanism to
deal with missing values. To this end, XGBoost implements
so called sparsity-aware split finding. Each internal node
in a tree is assigned a default direction (right or left) to
take when the observation does not contain the feature that
the respective node uses for splitting (see Fig. 2). During
training, when identifying the best splitting point, XGBoost
also chooses a corresponding default direction that results
in a better training objective. In the present application,
XGBoost’s ability to utilize informative missing values

may aid in best leveraging the information contained in
the times to first action occurrence. Recall that these not
only contain information on when the respective actions
were first performed but also on whether or not they were
performed at all. In the latter case, times to first action were
set to be missing.

Set-up and implementation

For model selection and evaluation, we used nested cross
validation. Nested cross validation has an outer loop with
k folds for model evaluation and an inner loop that splits
each of the k outer folds into l inner folds used for
hyperparameter tuning. Following Requena et al. (2020), we
used l = 3 inner folds and k = 5 outer folds.

Training data and hyperparameter optimization To deal
with imbalanced training data, we employed upsampling,
i.e., replicating observations in the minority class to match
the sample size of the majority class (Garcia, Sánchez, &
Mollineda, 2012). In the inner cross validation loop, the
optimal settings for the hyperparameters for each training
sample of the outer cross validation loop were determined
via grid search, varying the number of iterations (i.e., the
number of trees to grow; 50; 100; 150), the maximum tree
depth (3; 6; 9), and the learning rate (0.01; 0.10).5

All analyses were conducted in R version 3.6.3 (Core
Team, 2020). We drew on the classification algorithm
implemented in xgboost (Chen et al., 2021). The
hyperparameter grid search of the inner cross-validation
loop was performed using caret (Kuhn, 2021). Bi-
and trigrams were extracted using ngram (Schmidt &
Heckendorf, 2017). Exemplary R code is provided in the
OSF repository accompanying this article.

Evaluation criteria

For evaluating predictions of failure, we monitored sensitiv-
ity, specificity, positive and negative predictive values (PPV
and NPV), and coefficient φ (i.e., the correlation between
observed and predicted failures) derived from the confu-
sion matrix depicted in Fig. 3 alongside AUC ROC values.6

For constructing the confusion matrix, we set the discrim-
ination threshold to .50, i.e., classified observations with

5Intuitively, the learning rate refers to the weight given to the new
trees’ corrections of the residual errors when added to the model. The
learning rate can take values between 0 and 1.
6Recall that the ROC curve is plotted with the true positive rate
(i.e., sensitivity) on the y-axis against the false positive rate (i.e.,
1−specificity), on the x-axis under varying discrimination thresholds.
Hence, the AUC ROC poses a combined measure of sensitivity and
specificity and equals 0.5 when the ROC curve corresponds to random
chance and 1.0 for perfect accuracy.
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Fig. 3 Confusion matrix and derived evaluation criteria

probabilities of failure exceeding the threshold as failures.
Note that failure was treated as the positive class (i.e., the
class to be predicted).

Feature evaluation

We leveraged XGBoost’s built-in feature importance
calculation to get interpretable insights on the relevance
of features for classification. For a given trained XGBoost
model, the feature importance is calculated as the average
gain across all splits the respective feature is used in (over
all trees), where gain corresponds to the improvement of the
loss function gained by splitting at a particular node.

Results

RQ1: Establishing a baseline

As evidenced in Table 3, for both items we achieved
excellent classification performance when using complete
clickstream data. This is not surprising, since clickstreams
document examinees’ solution process, and, therefore, their
pathways to success or failure, and merely serves as an
indicator that XGBoost can well perform on the constructed
features when sufficient information is available. While we
could perfectly distinguish correct from incorrect sequences
for “Lamp Return”, classification performance was slightly
lower for “Meeting Rooms”.7

For both items, classification of full sequences was
almost exclusively performed based on information related

7These results reflect the higher complexity of the task. While almost
all examinees who opened the return form were able to fill it
out (partially) correctly on “Lamp Return” (only 3% of sequences
associated with failure contained interactions with the return form,
see Table 1), 27% of examiness who failed on “Meeting Rooms”
opened the reservation form but did not provide correct information
(see Table 2). That is, information on whether examinees interacted
with the form is sufficient for classification on “Lamp Return”, but not
on “Meeting Rooms”, where additional information on the correctness
of information provided on the reservation form is needed to achieve
perfect classification. Recall that we stripped this information from the
sequences.

to filling out the respective forms. On “Lamp Return”,
Exchange T, that is, the time elapsed until stating the reason
for returning the lamp on the return form, was by far the
most predictive feature, with a mean gain across all five
outer folds of 0.94 and standard deviation of 0.02. On
“Meeting Rooms”, Dept tfidf, that is, tf-idf weights for
selecting a department on the reservation form, was the most
predictive feature, with a mean gain across all five outer
folds of 0.75 and standard deviation of 0.01. For both items,
all remaining features had mean gains below 0.05.

RQ2: Investigating the accuracy of early predictions

Figures 4 and 5 give classification performance values along
with the monitored descriptives for the early-window data
sets trimmed by actions and time, respectively. Note that
for both tasks, Utility values (i.e., the ratio of the number
of incorrect sequences in the early-window data set to the
number of incorrect sequences in the complete data set)
steadily declined from very early windows on. The initial
drops in Utility go back to examinees leaving the task
unsolved after performing no or only few actions in a short
amount of time, presumably due to lack of motivation.

For early-window data sets created on the basis of the
number of performed actions, classification performance in
terms of all criteria rapidly improved with an increasing early-
window size. Remarkably, for “Lamp Return”, information
contained in the wa = 1 data set was already sufficient to
outperform classification at random chance level, as indicated
by an AUC ROC value of 0.64. This was different for
“Meeting Rooms”, where the AUC ROC value for wa = 1
was 0.53. AUC ROC and φ values exceeded 0.70 and 0.30,
respectively, at wa = 3 on “Lamp Return” and at wa = 7 on
“Meeting Rooms”. At these points, comparable sensitivities
(0.68 for “Lamp Return” and 0.67 for “Meeting Rooms”)
and specificities (0.64 for both items) were achieved for
both items; however, performance in terms of PPV and NPV
differed. While for “Meeting Rooms”, PPV and NPV were
comparable and acceptably high (0.66), “Lamp Return”
yielded a relatively poor PPV of 0.58 combined with a high
NPV of 0.73. These differences reflect the different base
rates at the considered early-window sizes. While the wa =
7 “Meeting Rooms” data set was balanced, the wa = 3
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Table 3 Classification performance based on full clickstream data

Item AUC φ Sensitivity Specificity PPV NPV

U23 (“Lamp Return”) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

U02 (“Meeting Rooms”) 0.98 (0.00) 0.86 (0.01) 0.91 (0.01) 0.96 (0.01) 0.97 (0.01) 0.88 (0.01)

Displayed are means and standard deviations across all five outer folds. AUC: Area under the receiver operating curve; PPV: positive predictive
value; NPV: negative predictive value

“Lamp Return” data set contained a higher proportion of
(partially) correct sequences (0.58).

The longer sequence length required to achieve clas-
sification performance for “Meeting Rooms” compa-
rable to performance for “Lamp Return” with much
shorter sequences reflects the higher complexity of
“Meeting Rooms”. Note, however, that the raw action

sequence lengths for which comparable classification per-
formance was achieved correspond to comparable median
Earlinessa(a) values (0.86 at wa = 3 for “Lamp Return” and
0.88 at wa = 7 for “Meeting Rooms”). That is, in relative
terms, the items did not differ in their early predictability.
Nevertheless, Utility at wa = 7 for “Meeting Rooms” was
lower (0.69) than at wa = 3 for “Lamp Return” (0.86). That
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Fig. 4 Evaluation of early-window predictability when trimming by
the number of performed actions. Shaded areas for the performance
criteria give the mean ± one standard deviation across the five outer
folds. Solid lines for the Earliness metrics give their median, while

shaded areas for the Earliness metrics denote middle 50% ranges
within the respective early-window data set. AUC: Area under the
receiver operating curve; PPV: positive predictive value; NPV: nega-
tive predictive value
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Fig. 5 Evaluation of early-window predictability when trimming by
elapsed time (in seconds). Shaded areas for the performance criteria
give the mean ± one standard deviation across the five outer folds.
Solid lines for the Earliness metrics give their median, while shaded

areas for the Earliness metrics denote middle 50% ranges within the
respective early-window data set. AUC: Area under the receiver oper-
ating curve; PPV: positive predictive value; NPV: negative predictive
value

is, a lower proportion of examinees who failed could poten-
tially have been identified to be at risk before completing
the task.

By and large, we observed these patterns to mirror
when early-window data sets were created on the basis of
elapsed time (Fig. 5). The only exception were patterns
for sensitivity and specificity. For both items, at wt =
20 seconds, high sensitivities were accompanied by poor
specificities. We could attribute these patterns to the fact
that, due to lack of further information, all sequences
not yet containing any actions after 20 s were classified
as failures. On “Meeting Rooms”, 71% of examinees
did not perform any actions within the first 20 s, out
of which 60% of examinees failed. On “Lamp Return”,
where the pattern was less extreme, 49% of examinees

did not perform any actions within the first 20 s, and
half of these examinees failed. With an increasing early-
window size, more information for differentiating between
these examinees became available—at wt = 30 seconds,
for instance, the proportion of sequences without any
performed actions fell to 42% on “Meeting Rooms” and to
21% on “Lamp Return”—and sensitivities and specificities
converged to each other. AUC ROC and φ exceeded 0.70
and 0.30 at wt = 40 for “Lamp Return” and wt = 60 for
“Meeting Rooms”, corresponding to a median Earlinesst (t)

of 0.69 and 0.79, respectively.
In additional analyses, we investigated variability of early

predictability across examinees with different Earliness
metrics for a given early window. As could be expected,
we found that classification was more challenging for
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sequences for which the considered early window marked
very early points of the solution process. Further details and
full results are given in the Appendix.

RQ3: Investigation of feature importance

Figures 6 and 7 exhibit changes in the importance of
different features across selected early windows. For
reasons of clarity, only those features are displayed for
which gains above 0.05 were encountered in at least one
of the outer validation folds. Notably, at very short early
windows, features summarizing the intensity of examinees’
interactions with the task environment rather than referring
to specific performed actions displayed the highest feature
importance. This may indicate that these features reflect
examinees’ reading and general computer competencies,
determining how fast they can parse the task instructions
and begin with their explorations as well as how fast
they understand the task environment and are capable of
navigating through it. With an increasing early-window
size, features referring to specific actions gained increasing
importance, documenting typical behavioral pathways.

For “Lamp Return”, in the wa = 1 data set, by far
the most important features were Activity (i.e., the time
elapsed within the considered early window),8 and the time
elapsed until first going to the online shop’s customer
service site (see Fig. 6a). In the wa = 4 and wa = 7 data
sets, the time elapsed until first visiting the online shop’s
return form was the most important feature. Other important
features were the time until first switching between sites and
environments (BackForward T and EmailWeb T), the time
to first exploring the online shops’ products (Products T)
as well as the intensity with which products were explored
(Products tfidf). Only in the wa = 7 data set, the time until
stating the reason for returning the lamp on the return form
(Reason T)—being performable only at later stages of the
solution process—posed a relevant feature for classification.
Similar patterns were observed when trimming by time
(Fig. 6b). Here, the time elapsed until first going to the
online shop’s customer service site was the most important
feature in the wt = 20 data set, while the time elapsed
until first visiting the return form was the most important
feature in the wt = 50 data set. Note that examinees could
only visit the return form via the customer service site, such
that performing the former action was a prerequisite for the
latter. The wt = 30 data set can be seen as documenting
a transition phase where both features showed comparable
importance.

Analogously, for “Meeting Rooms”, Fig. 7 illustrates
how the importance of the aggregate features Activity and

8Note that for wa = 1, Activity corresponds to the time to first action,
since only one action was performed within the early window.

FirstTime diminished with an increasing early-window size.
For short early windows of wa = 2 and wt = 20, features
related to exploring the task environment (FolderView T
and MailView T) were of relevance. For wa = 5 and
wt = 40, the time until examinees first moved an email
(MoveMail T) became relevant. Although this was not a
necessary action for solving the task, the relevance of
this feature may indicate that examinees moved emails
containing completed reservation requests to other folders,
thereby organizing themselves. A bigram and a trigramwere
among the most important features in the wa = 9 and
wt = 70 data sets, highlighting the importance of taking
the sequentiality of actions into account when sequences are
longer. Interestingly, the time until first switching between
the email and web environments of the task (EmailWeb T)
was a relevant feature throughout all considered early
windows, and the intensity with which examinees did so
(EmailWeb tfidf) became a relevant feature in the wt =
70 data set. This is not surprising, as examinees needed
to compare and integrate information displayed in these
environments, requiring (repeated) switching between them.

Recall that the time to first action occurrence was coded
as missing when the respective action did not occur in a
given sequence. Hence, the high importance of features
related to the time of first action occurrence may be not
only due to the time elapsed until examinees first performed
the respective action, but also due to the informativeness
of non-occurrence of the actions within the considered
early windows. To support this hypothesis, however, further
analyses are needed.

Discussion

The aim of the present study was to introduce and showcase
a machine learning-based procedure for systematically
investigating early predictability of failure on interactive
tasks based on early-window clickstream data. To that
end, we analyzed two interactive tasks from the PIAAC
2012 PSTRE domain that differed in their difficulty and
complexity of expert-defined solutions.

We enriched generic features derived from sequence data
such as tf-idf encoded action occurrences and n-grams
with information on time elapsed until the performance of
actions. The employed XGBoost classifier trained on these
features could almost perfectly distinguish failure from
success when complete clickstreams were considered.

Building on procedures originating in shopper intent
prediction, we created early-window data sets, stripping all
time-stamped actions that occurred after a given number
of actions or a given amount of time from the sequences,
and investigated early predictability of failure on each
of these data sets. This procedure supports a systematic
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Fig. 6 Feature importance for selected early windows for Item U23 (“Lamp Return”). Each dot refers to one of the outer validation folds. Only
gains above 0.05 are displayed

investigation of how much information is needed to achieve
sound early predictions. To evaluate the quality and utility of
early predictions, we enriched customary machine learning
performance metrics with Earliness and Utility measures.

We achieved AUC ROC values exceeding .70 and
correlations between observed and predicted outcomes of
above .30 at stages where examinees had, on average, at
least more than two thirds of the number of actions to
perform, respectively, time spent on task ahead of them, and
the vast majority of examinees who failed could potentially
be detected to be at risk before completing the task. This is
remarkable, as the AUC ROC values achieved under these
sparse data conditions resemble those reported for complete
clickstreams using solely theory-derived features (Salles
et al., 2020) or drawing on model-based rather than machine

learning approaches for prediction at much later stages of
the solution process (Chen et al., 2019). Nevertheless, we
found predictability to differ across examinees for which
the considered early windows marked different stages of the
solution process.

In-depth analyses revealed different features to be
indicative of success and failure at different stages of the
solution process, thereby highlighting the potential of the
applied procedure for gaining a finer-grained understanding
of the trajectories of behavioral patterns on interactive
tasks. Depending on how early predictions were performed,
we found both aggregate features related to the timing
and intensity of initially performed actions as well as the
occurrence, timing, and frequency of single key actions of
the solution process to be most important.
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Fig. 7 Feature importance for selected early windows for “Meeting Rooms”. Each dot refers to one of the outer validation folds. Only gains above
0.05 are displayed

Limitations and future research

Since the primary goals of the present study were to
outline the procedure and provide a proof of concept for
the utility of clickstream data for early prediction, we
did not invest much effort into further improving our
already fairly accurate prediction. As such, the reported
performance criteria may be seen as a lower benchmark
for future studies on further improving early predictability.
Several directions can be taken to achieve this end. First,
more elaborate features may be constructed, e.g., by
incorporating expert knowledge into the construction of
task-specific features. Second, indicators of examinees’
behavior on preceding tasks could be included. These
could range from simple performance scores, indicating
which tasks examinees were capable to solve correctly,

through classifications into different behavioral groups
(e.g., whether or not examinees employed some expert-
defined strategy or showed behavior that may be classified
as disengaged) to feature sets that provide a fine-grained
summary of the preceding tasks’ clickstreams (e.g., as in
Tang et al., 2020a). Third, future research may investigate
whether other classifiers such as support vector machines
or neural networks outperform XGBoost on features
constructed from clickstream data. Fourth, the extraction
of features may be left to deep learning approaches (see
Urban & Gates, 2021, for an introduction), such as long
short-term memory classifiers—a recurrent neural network
architecture particularly well-suited for sequence data—
as employed by Requena et al. (2020). Note, however,
that such procedures sacrifice interpretability of predictive
features and, therefore, do not support employing analyses
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of early-window predictive features for the purpose of better
understanding examinees’ early solution behavior. Fifth,
performance may be improved and customized by drawing
on cost-sensitive learning (see Elkan, 2001). In cost-
sensitive learning, each class is given a misclassification
cost. For instance, researchers could make false predictions
of success more costly than falsely identifying examinees as
being at risk of failure. The classifier then aims to minimize
the total misclassification cost instead of maximizing
accuracy. Cost-sensitive learning can improve performance
in imbalanced data (i.e., very easy or difficult tasks), when
classifiers are “overwhelmed” by the majority class (Thai-
Nghe, Gantner, & Schmidt-Thieme, 2010) and supports
incorporating considerations on different costs of false
positives and false negatives (Elkan, 2001).

For the tasks considered in the present study, different
early-window sizes were required to achieve good pre-
dictability. The considered tasks differed in many aspects,
such as difficulty, the number of performable actions, and
the number and complexity of possible pathways to the cor-
rect solution, to name just a few. It remains an open task to
investigate which of these aspects facilitate or hinder early
predictability.

In showcasing the utility of clickstream data for early
predictions in assessments, the procedure outlined in
the present study may serve as a blueprint for studies
investigating early predictability of other types of behavior
and its outcomes and/or in other types of assessments with
interactive modes. Collaborative, game- and simulation-
based tasks, for instance, rapidly become more widely
used (von Davier, Zhu, & Kyllonen, 2017) and commonly
involve a myriad of behavioral outcomes besides success
or failure, such as motivational or affective outcomes (e.g.,
flow experience or reduced test anxiety) in game-based
assessments (Kiili & Ketamo, 2017) or the effectiveness
of cooperation in collaborative problem-solving (Hao, Liu,
von Davier, Kyllonen, & Kitchen, 2016). In low-stakes
assessments, the predictability of disengaged test-taking
behavior may be particularly worth investigating. On the
basis of such predictions, attempts can be taken to motivate
examinees identified to be at risk of showing disengaged
test-taking behavior to display the best of their abilities,
thereby increasing validity of conclusions drawn from low-
stakes assessment data (see Wise, Bhola, & Yang, 2006, for
an application on multiple choice items).

From a methodological perspective, the present study
once again highlights the vast potential of employing meth-
ods for real-life clickstream data (i.e., user’s interactions
with websites) for understanding clickstream data collected
on interactive tasks (see He et al., 2021; Tang et al., 2020a;
Ulitzsch et al., 2021b, for applications in psychometrics).
While the analysis of such data has only recently gained

the attention of the psychometric, psychological, and educa-
tional science communities, clickstream analyses of users’
interactions with websites has a much longer history, offer-
ing a variety of methods that are worth to further explore
and adapt to the context of educational assessment.

Conclusion and implications

Using machine learning techniques on early-window
clickstream data supports making sound early predictions
of failure or success on interactive tasks as well as a finer-
grained understanding of examinees’ initial exploration
and solution behavior. Insights gained from such analyses
can be of utility for both improving assessments and
deriving appropriate conclusions and interventions from
their results. First, understanding what distinguishes initial
task exploration and solution behavior leading to success or
failure may aid in improving the construction of interactive
tasks. Item developers can closely investigate whether
examinees explore the task environment as intended or
whether there are some elements that are confusing or
misleading and lead to failure.

Second, early identification of examinees at the risk of
failure provides the opportunity to support these examinees
in their solution process, e.g. by providing hints or
further clarifications, and systematic investigations of early
predictability may aid in identifying the optimal point
to provide such support. The adaptive tailoring of the
tasks’ difficulties to examinees’ skill levels could then
mirror the principles of computer-adaptive testing, possibly
resulting in a more engaging assessment experience for
examinees and more precise proficiency estimates. As such,
the present study could also be understood as a pilot
study to initiate discussions on new forms of adaptive
testing, where, instead of the items to be administered, the
tasks themselves are subject to adaptations based on real-
time evaluations of examinees’ competencies. It should be
noted, however, that before such adaptive items can be
developed, different types of failure need to be distinguished
and separately identified in the early prediction model.
Failure on interactive tasks can occur for a variety of
different reasons, ranging from lack of different subskills
and/or metacompetencies required to solve the task through
misinterpreting instructions to examinees not exerting their
best effort and interacting quickly and superficially with the
task at hand (Ulitzsch et al., 2021a), and different types
of predicted failure may require different types of item
adaptations.

Third, understanding how low proficiency examinees
initially explore the task environment may aid in designing
interventions aimed at improving problem-solving skills
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by equipping examinees with strategies on how to more
effectively explore and approach problem-solving tasks,
following recent calls to better target interventions at
specific subskills or metacompetencies examinees are
lacking (Stadler, Fischer, & Greiff, 2019).

Appendix

Variability of Early Predictability for
ExamineesWith Different Earliness Metrics

To investigate variability of early predictability across
examinees with different Earliness metrics for a given early
window, we evaluated performance measures separately for
each Earliness tertile for some selected early windows. We
exemplarily focused on those early windows for which AUC
ROC and φ first exceeded 0.70 and 0.30, respectively. That is,
we considered wa = 3 and wt = 50 for “Lamp Return” and
wa = 7 and wt = 70 for “Meeting Rooms”. We expected
the quality of early prediction to vary across Earliness
tertile groups. First, for examinees with higher Earliness
parameters, prediction is performed at earlier stages of the
solution process and key actions differentiating success
from failure may not yet have been performed. Second,
the different sequence lengths, respectively times spent on
task, reflected in differences in Earliness for a given early
window may be indicative of different subpopulations of
behavioral patterns leading to success or failure on the
task. Short time spent on task and few performed actions
may stem from disengaged test-taking behavior when

associated with failure (Sahin & Colvin, 2020; Ulitzsch
et al., 2021a), but may be indicative of high competency
and an efficient response strategy when associated with
success (Hao et al., 2015). A high number of performed
actions, respectively long time spent on the task, may go
back to examinees trying hard to solve the item, but having
an inefficient strategy or showing extensive, unsystematic,
or idiosyncratic exploration behavior (Ulitzsch et al., 2021a,
b). Early-window behavioral patterns distinguishing success
from failure in these different subpopulations and, as
a consequence, predictability may differ. Note that we
employed the prediction models trained on the whole early-
window data set and did not train separate models for
each tertile group, following the consideration that when
dynamically predicting failure under real-life assessment
conditions, Earliness for a given early window is unknown
until examinees complete the task.

Results are displayed in Table 4. As expected, we
observed differences in classification performance across
the Earliness tertile groups. Across all considered early-
window data sets, AUC ROC values decreased across
the Earliness tertile groups. That is, classification was
more challenging for sequences for which the considered
early window marked very early points of the solution
process. The same is true for specificities as well as for
sensitivities and coefficient φ on “Lamp Return”. The
extreme imbalancedness in “Meeting Rooms”’s lower and
upper tertile groups seemed to challenge coefficient φ,
resulting in an inverted U-shape across the Earliness tertile
groups. Interestingly, sensitivities on “Meeting Rooms”
decreased in the wa data set, but were U-shaped in the

Table 4 Earliness tertile group-specific classification performance for selected early window data sets

Early window Tertile Earliness Proportion correct AUC φ Sensitivity Specificity PPV NPV

Item U23 (“Lamp Return”)

wa = 3 1 0.57 0.11 0.91 (0.03) 0.37 (0.05) 0.70 (0.02) 0.87 (0.05) 0.98 (0.01) 0.27 (0.03)

2 0.86 0.80 0.75 (0.03) 0.28 (0.05) 0.69 (0.05) 0.66 (0.04) 0.33 (0.04) 0.90 (0.01)

3 0.92 0.80 0.63 (0.03) 0.14 (0.04) 0.58 (0.05) 0.59 (0.03) 0.26 (0.04) 0.85 (0.01)

wt = 50 1 0.38 0.48 0.94 (0.01) 0.64 (0.04) 0.68 (0.02) 0.94 (0.02) 0.93 (0.03) 0.73 (0.02)

2 0.60 0.73 0.80 (0.02) 0.39 (0.03) 0.74 (0.06) 0.69 (0.02) 0.47 (0.03) 0.87 (0.03)

3 0.76 0.73 0.66 (0.02) 0.20 (0.03) 0.76 (0.07) 0.46 (0.05) 0.35 (0.02) 0.84 (0.03)

Item U02 (“Meeting Rooms”)

wa = 7 1 0.63 0.04 0.78 (0.07) 0.17 (0.07) 0.71 (0.03) 0.68 (0.17) 0.98 (0.01) 0.09 (0.03)

2 0.88 0.65 0.72 (0.03) 0.34 (0.03) 0.62 (0.03) 0.73 (0.02) 0.55 (0.03) 0.78 (0.01)

3 0.93 0.78 0.61 (0.04) 0.12 (0.04) 0.58 (0.05) 0.57 (0.04) 0.27 (0.02) 0.83 (0.02)

wt = 70 1 0.47 0.07 0.90 (0.02) 0.36 (0.04) 0.72 (0.03) 0.94 (0.03) 0.99 (0.00) 0.20 (0.03)

2 0.77 0.63 0.76 (0.03) 0.42 (0.07) 0.59 (0.07) 0.81 (0.04) 0.65 (0.06) 0.77 (0.02)

3 0.86 0.80 0.66 (0.04) 0.20 (0.05) 0.74 (0.06) 0.51 (0.04) 0.27 (0.02) 0.89 (0.03)

Displayed are means and standard deviations across all five outer folds. AUC: Area under the receiver operating curve; PPV: positive predictive
value; NPV: negative predictive value; Earliness gives mean Earlinessa(a) within the respective tertile group when trimming by actions and mean
Earlinesst (t) within the respective tertile group when trimming by time
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wt data set. Strong PPV decreases accompanied by NPV
increases across the Earliness tertile groups partially reflect
the different base rates (i.e. proportions correct) within
the groups. This becomes particularly evident for the
lower tertile groups for “Meeting Rooms”, where sequence
lengths were too short to lead to (partial) success and, hence,
almost all sequences were associated with failure. Given the
extremely low proportions correct, the PPV close to 1 and
NPV close to 0 are not surprising.
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