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Abstract

This paper develops a method to compute second-order perturbations of discrete-
time heterogeneous agent models. It addresses the three main tasks to make second-
order approximations tractable: state reduction, generating sufficient smoothness,
and fast computation of the quadratic terms in the perturbation solution.

The method is applied to a model with divisible labor, one with indivisible labor,
and to an OLG model with stochastic aging. Compared to a linearized solution,
second-order perturbations achieve substantially higher accuracy if models are sub-
ject to large or medium-sized aggregate shocks. They also capture precautionary
behavior with respect to aggregate shocks. A general method of state reduction is
developed, called ”conditional-expectations approach”. In the example models, it
performs better in terms of accuracy and reliability than alternative approaches.
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1 Introduction

The solution of heterogeneous agent models with incomplete markets poses important

technical challenges, mainly because the underlying state space is very high-dimensional.

While the method of Krusell and Smith (1998) has been a workhorse in this field for

more than 20 years, several alternatives have been explored in recent years. Frequently

used are variations of the linearization approach, either in state space form (Reiter 2009a;

Reiter 2010a) or in sequence form (Boppart, Krusell, and Mitman 2018; Auclert, Bardóczy,

Rognlie, and Straub 2021). In this approach, the solution of the individual problem is fully

nonlinear in the individual states, the model is linearized in aggregate variables around the

stationary state in the absence of aggregate shocks. This approach allows to solve a wide

variety of heterogeneous agent models, but shares the general limitation of linearization

methods, in particular it fails to account for the effect of aggregate uncertainty on individual

behavior.

Given the success as well as the limitations of linearization, it is natural to proceed to

higher-order perturbation solutions, at least to a second-order perturbation, providing a

quadratic approximation around the steady state. To do this in the framework of discrete-

time models, three problems must be solved. First, a systematic way is needed to reduce

the dimensionality of the state space, since the number of coefficients of the approximation

grows quadratically in the state dimension. Second, numerical approximations must be

chosen such that the solution is smooth enough in the state variables for a perturbation to

make sense. This problem already exists for linear perturbations, but becomes more severe

when going to second-order. If the optimization problem of economic agents is non-convex,

individual decisions are discontinuous and needed to be smoothed out in the aggregate.

Third, one needs an efficient way to compute the large set of coefficients that describe the

quadratic solution.

The main contribution of this paper is to present a method that successfully addresses

these issues. The usefulness of the second-order perturbation is then investigated thorough

accuracy checks on some example models. As a preliminary step, I present in Appendix A

an improved version of the linear model reduction algorithm of Reiter (2010a), on which

the second-order approximation builds.

For state reduction, I investigate two methods outlined in Reiter (2010a), namely princi-

pal component analysis (PCA) and the ”conditional expectations approach” (CEA). They
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use information from the linearized solution of the model; the results below will show that

they are also useful for quadratic approximations. I compare these approaches to more tra-

ditional state selection methods such as using moments of the cross-sectional distribution,

or the wealth of different cohorts in an OLG model.

To guarantee smoothness of the solution, I assume that economic agents face an i.i.d. shock

with twice differentiable density function and bounded support in every period. This has

several advantages. First, it helps to smooth the value function, integrated over the dis-

tribution of the shock, in the sense of being at least twice differentiable.1 Second, it helps

to smooth transition probabilities in the case where the cross-sectional distribution of cap-

ital is approximated by finite point masses. Third, it helps to ensure the existence of

general equilibrium in models with non-convex choice problems. Discontinuous individ-

ual demand functions in combination with approximations of cross-sectional distributions

by finite point masses imply discontinuous aggregate demand functions, which often pre-

vents the existence of an equilibrium. Smooth i.i.d. shocks solve this problem by making

aggregate quantities continuous.2 One should acknowledge that the introduction of an

i.i.d. shock is not just a change in the numerical approximation method, but a substantive

change to the model itself. With the right choice of shock, it arguably makes the model

more realistic.

To speed up the computation of the solution, an efficient implementation of the second-

order differentiation of all model equations is needed. I implement the method of this

paper in a Julia toolkit which includes fast automatic differentiation routines.3 After

differentiation, the coefficients of the second-order perturbation are determined by a system

of linear equations. In heterogeneous agent models, this equation system can be huge.

Using a recursive algorithm, one can exploit the sparsity of the system to obtain the

1I solve all models with the value function approach, which is the most general one. For the models the

household optimization problem is convex, one can alternatively operate on the household Euler equation.

Both approaches have advantages and disadvantages.
2Using i.i.d. shocks to smooth dynamics is a frequently used approach in many contexts, going back

at least to Dotsey, King, and Wolman (1999). In the framework of linear perturbations, Childers (2018)

shows that finite-dimensional approximations of the model converge to the linearized solution in function

space if there is enough smooth noise in the model. The proof requires smooth noise that directly affects

the state variable. I conjecture that the smooth shock used in this paper has the same effect.
3The current (preliminary) version of the toolkit can be obtained from the author on request. It

replicates the results of this paper.
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solution easily.

I apply the method to three models with heterogeneous households: a very standard

model of heterogeneous households with endogenous, continuous labor choice; a model

of indivisible labor very close to Chang and Kim (2007); and finally a model of twelve

overlapping generations with stochastic aging. The main conclusions are as follows. The

accuracy of the second-order approximation is at least one order of magnitude higher than

that of a linearized solution if aggregate shocks are large. The CEA approach performs

best among the state-reduction methods considered. In the models with a TFP shock only,

the effect of aggregate uncertainty on household behavior in a heterogeneous agent model

is of similar magnitude as in a representative agent RBC model. The necessary computing

time is of the same order of magnitude for the second order perturbation as for the steady

state and linearization.

1.1 Related literature

The model reduction presented here is based on the state reduction in the working paper

Reiter (2010a), which has been applied in McKay and Reis (2016) and Reiter, Sveen,

and Weinke (2013), among others. Appendix A completes the model reduction by adding

optimal value function reduction. Over the last years, there has been growing interest in

linearization and perturbation approaches to heterogeneous agent models. Ahn, Kaplan,

Moll, Winberry, and Wolf (2018) develop a similar linearization technique for continuous

time models. Boppart, Krusell, and Mitman (2018) show that there is an alternative way to

compute a linearized solution, using the fact that the simulation path of a linearized model

is just a linear superposition of impulse responses to ”MIT shocks”. Auclert, Bardóczy,

Rognlie, and Straub (2021) provide an efficient implementation of this method. Using

methods of functional analysis, Childers (2018) gives a theoretical foundation of finite-

dimensional approximations to models with infinite-dimensional state space. He shows

that there must be smooth noise of sufficient dimension in the model to make sure that

the discretely approximated model converges to the solution of the continuous model.

Although the i.i.d. noise introduced below does not have the same form as in Childers

(2018), it should have a similar effect. Mertens and Judd (2017) perform the perturbation

around the deterministic steady state with neither aggregate nor idiosyncratic shocks.

Bhandari, Evans, Golosov, and Sargent (2021) derive a new perturbation method that
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can be applied to certain problems of optimal policy with heterogeneous agents. Probably

closest to the present paper is Gornemann, Kuester, and Nakajima (2021), who also use

a second-order perturbation approach for solving a heterogeneous agent model. They use

state reduction based on a PCA approach, and compute the second-order perturbation by

a variation of the code of Schmitt-Grohé and Uribe (2004). In contrast to Gornemann,

Kuester, and Nakajima (2021), the focus on the present paper is on the methodology,

investigating different model reduction schemes, checking accuracy, and developing a fast

iterative solution method.

Bilal (2023) uses mean-field theory to derive perturbation solutions for continuous-

time models. Numerical examples are provided for first-order perturbations, formulas

are also provided for second-order perturbations. This approach does not build on state

aggregation, it exploits the fact that, in continuous time, the Jacobian of the value function

with respect to the cross-sectional distribution can be efficiently computed using established

techniques for partial differential equations. The relative advantages of continuous versus

discrete-time methods will probably depend on the specific application and have yet to be

explored in depth.

Beyond perturbation, a number of alternative approaches have been proposed. Similar

to Den Haan (1997), Winberry (2018) uses a low-dimensional smooth approximation of

cross-sectional distribution, to allow for higher-order perturbation solutions. Grand and

Ragot (2022) propose an alternative way to reduce the state dimension with the aim of

substantial simplification rather than maximal accuracy. Kubler and Scheidegger (2021)

reduce the state space to a very small dimension using the concept of self-justified equilibria,

which has a bounded-rationality interpretation. In contrast, my approach aims to provide

an approximation that is as close as possible to the rational expectations equilibrium under

full information.

2 Some Example Models

To illustrate the properties of the proposed method, I look at three different heterogeneous

agent models, starting from a model with infinitely lived households and endogenous labor

supply. It differs from a plain-vanilla RBC model only by introducing idiosyncratic shocks

to household productivity (cf. Section 2.2). It has been known since Krusell and Smith

(1998) that heterogeneity has little impact on aggregate variables in this simple setup.
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I use this model specifically to see how the precautionary effect arising from aggregate

uncertainty is affected by household heterogeneity.

The second model described in Section 2.2 is taken from Chang and Kim (2007). The

continuous labor choice of the previous model is replaced by indivisible labor, where a

household can work either zero hours or a fixed number of hours. Because of indivisibility,

households face a non-convex optimization problem in this model. This raises additional

problems for perturbation solutions which I will address. I will also test whether the

perturbation solution can replicate the results from a Krusell-Smith solution, as reported

in Takahashi (2014).

Finally I consider an OLG model with stochastic aging (cf. Section 2.3). Households

differ by age and by wealth. Intra-cohort heterogeneity in wealth arises from different

histories in both labor productivity and the speed of economic aging. This model shows a

richer variation in the cross-sectional distribution, and is a good laboratory to investigate

the usefulness of different types of state reduction.

2.1 Productivity and technology (all models)

Output Y is produced using a Cobb-Douglas production function in capital K and effective

labor L

Yt = ZtK
α
t−1L

1−α
t (1)

where total factor productivity Z follows the AR(1) process

Zt = 1 + ρz · (Zt−1 − 1) + ϵz,t, ϵz,t ∼ (0, σz) (2)

This process is formulated as linear in Z, not in log(Z), so that an increase in σz leaves

the mean of Z unaffected, which facilitates the interpretation of precautionary effects.

Gross investment I increases the capital stock, subject to some possibly time-varying

depreciation:

Kt = It + (1− δt)Kt−1 (3)

Net real interest rate r and wage per efficiency unit w are determined by their marginal

productivities: rt = α ·Zt

(
Kt−1

Lt

)α−1

−δt, wt = (1− α)Zt

(
Kt−1

Lt

)α
. The aggregate resource

constraint is given by

Yt = Ct + It (4)
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Table 1: Parameter values, quarterly frequency

Parameter Meaning Models Value

α capital share all 0.36

δ̄ average depreciation rate all 0.025

β time discount factor div.lab. 0.990

indiv.labor 0.983

OLG 0.995

η weight leisure in util. div.lab., OLG 1.5

B disutility labor. indiv.lab. 166.3

ρz autocorr. TFP all 0.95

σz stdev. shock TFP div.,indiv.labor 0.007

σz stdev. shock TFP OLG 0.005

ρδ autocorr. depr. OLG 0.50

σδ stdev. shock deprec.rate OLG 0.005

ρA autocorr. slope prodtty. OLG 0.95

σA stdev. shock slope prodtty. OLG 0.010

ρH autocorr. individual prod. all 0.929

σH std.dev. indiv. productivity all 0.227

σξ std.dev. i.i.d. shock all 0.05

2.2 The infinite horizon models

The household problem

Households maximize E
∑∞

t=0 β
tU(ct, ht) over consumption ct and hours worked ht, subject

to the constraints

at = (1 + rt)at−1 + htxtξtwt − ct

at >= a

ht ∈ H (5)

Here at denotes end-of-period assets and xt is an individual productivity process, modeled

as a finite Markov chain such that log(x) approximates an AR(1) process with persistence

ρH and standard deviation σH . The i.i.d. component of individual productivity, ξt, has

expected value 1 and standard deviation of σξ, with a finite support and a density function
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that is twice differentiable everywhere (cf. Online-appendix B.2). Factor prices w and r

are functions of the aggregate state S = (Z,D), where Z follows (2), and the law of motion

for the cross-sectional distribution D′ = T (Z,D) is determined in general equilibrium.

In the divisible-labor model, current utility is given by U(c, h) = log(c)+ η log(1−h)

and hours are chosen from the set H = [0, 1]. Labor supply is determined by the first order

condition uL(Ct,ht)
uC(Ct,ht)

≥ wt with equality if h > 0. For asset-rich households, the constraint

h ≥ 0 may be binding. In the indivisible-labormodel, current utility is given by U(c, h) =

log(c) − Bh and the choice set for labor has only two points, H = {0, 1/3}. Whether a

household works depends on the asset level as well as the persistent and the i.i.d. component

of productivity. In this model, the aggregate number of hours is determined exclusively by

the extensive margin. Online-appendix B.4 describes how to compute perturbations of the

extensive margin effect.

The household value function satisfies the Bellman equation

V (a, x;S) =

∫
max

a′≥a,h∈H

{
U ((1 + r(S))a+ w(S)h · x · ξ − a′, h)

+ β
∑
x′

πx(x, x
′)× ES V (a′, x′;S ′)

}
dF (ξ) (6)

The expectation operator ES integrates over the distribution of the aggregate shocks, con-

ditional on the current aggregate state S.

Aggregate variables are obtained from individual choices by integrating over the cross-

sectional distribution Dt and the distribution F (ξ) of the i.i.d. shock:

Lt =

∫ ∫
x · ξ · h(a, x, ξ) dF (ξ) dDt(a, x)

Ct =

∫ ∫
c(a, x, ξ) dF (ξ) dDt(a, x)

Kt =

∫
a dDt(a, x)

Depreciation is assumed to be constant, δt = δ̄. Parameters and their values are standard

and listed in Table 1.

2.3 The OLG model

The OLG model is intended to illustrate the effects of more dimensions of heterogeneity,

as well as the effects of a larger number of aggregate shocks. The model period is one year.
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There are 12 cohorts of workers, meant to span the five-year periods from 20 to 80 years.

Ageing is therefore modeled as a stochastic process, where workers move to the next cohort

with probability 0.2. Workers of the first 8 cohorts are working, those of the last 4 cohorts

are retired.

Demographics

Workers are born in cohort τ = 1. Each period, a worker of any cohort τ ∈ (1, . . . , 10)

moves to cohort τ + 1 with probability 0.2, and stays in cohort τ with probability 0.8. A

worker in cohort τ = 11 moves to cohort 12 with probability 0.1, dies with probability 0.1,

and otherwise stays at τ = 11. A worker in cohort 12 dies with probability 0.2, and stays

in cohort τ = 12 with probability 0.8. To formalize this, we define the probability πs of

surviving into the next period, moving from age τ to τ + 1, as

πs(τ, τ
′) =



0.8 if τ ′ = τ

0.2 if τ ≤ 10, τ ′ = τ + 1

0.1 if τ = 11, τ ′ = 12

0.0 else

(7)

The death probability is 1 − πs(τ, τ) − πs(τ, τ + 1). With this demography, a constant

fraction of workers is retired, namely 30.4 percent. A worker who dies is superseded by a

new worker (”child”), born into cohort 1, who inherits the wealth that is left by the parent

worker as well as the individual labor productivity of the parent.

Labor productivity and the value function

Individual labor productivity is the product of three factors. The n-state Markov process

x and the i.i.d. shock ξ are exactly as in the infinite-horizon models. In addition, there is

an age specific factor X(τ, t) with a slope that is subject to an aggregate shock,

X(τ, t) = exp
(
−(0.01 + Ãt)(τ − 6)− 0.02(τ − 6)2

)
(8)

where

Ãt = ρAÃt−1 + ϵA ϵA,t ∼ (0, σA) (9)

This labor productivity profile is hump-shaped with quickly declining productivity in old

age. The shock Ã reduces productivity, affecting older cohorts more than younger ones.

Notice that there is no pension system, households need to save for retirement.
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Households discount future utility by the pure time discount factor β, multiplied with

the survival probability. This implies that they do not value the utility of their offspring,

bequests are therefore accidental. The household value function satisfies

V (a, x, τ ;S) =

∫
max

a′≥a,h∈[0,1]

{∑
x′,τ ′

πx(x, x
′)πs(τ, τ

′)×

[U (c, , h) + β ES V (a′, x′, τ ′;S ′)]
}
dF (ξ) (10)

where consumption follows the budget constraint

c = (1 + r(S))a+ w(S) · h · x · ξ ·X(τ(S))− a′ (11)

Again, the expectation operator ES integrates over the distribution of the aggregate shocks,

conditional on the current aggregate state S.

While retired, the productivity process x follows the same dynamics as during working

age. It has no effect on the household’s utility, but productivity is passed on to the child

household.

Production

Technology is the same as in Section 2.2, but subject to a stochastic depreciation rate of

capital, fluctuating around the mean value δ̄:

δt = δ̄ + ρδ(δt−1 − δ̄) + ϵδ,t ϵδ,t ∼ (0, σδ) (12)

In sum, the model now features three aggregate shocks: a shock to TFP, cf. Equ. (2); a

shock to the age premium of labor efficiency, cf. Equ. (9); a shock to the depreciation rate

of capital, cf. Equ. (12).

3 Solution Method

3.1 A class of heterogeneous agent models

In the following we assume that the state of each agent in the model can be described by

a vector4 of endogenous continuous individual state variables (such as different types of

4In the numerical examples, there is always one individual continuous state, namely financial wealth. In-

cluding additional continuous state variables is conceptually straightforward, but increases computational

complexity.
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assets), by an exogenous individual stochastic process which is approximated by a finite-

state Markov chain, as well as, potentially, by a discrete state, taking on values from a

finite set (such as employed/unemployed). Information about the heterogeneous agents is

summarized in the cross-sectional distribution of individual states, denoted by Dt.
5

We can now group the variables of the model as follows.

� Dt: the cross-sectional distribution of economic agents’ individual states at the end

of period t.

� qt: the vector of endogenous aggregate states not included in D (such as past in-

vestment in a model with investment adjustment costs), also measured at the end of

period t.

� zt: the vector of exogenous driving forces, such as TFP.

� εt: the vector of current aggregate shocks.

� Vt: the value function of the agents.

� at: all the remaining aggregate variables.

The vector of all states predetermined at the beginning of period t is denoted by St−1 ≡
(Dt−1, qt−1, zt−1). All time-t variables are therefore a function of St−1 and εt. We assume,

however, that the distribution Dt−1 directly affects individual behavior only through a set

of aggregate variables that are part of at. In most cases, these will be prices such as the

real wage or the real interest rate. A critical assumption about the model is that the vector

at is only medium-sized, in contrast to the distribution D, which is high-dimensional. This

is necessary for model reduction, cf. Appendices A.2 and A.3.

With these assumptions, the model equations can be written as follows:

Exogenous dynamics: zt = Z (zt−1, εt) (13a)

Endogenous dynamics: qt = Q (St−1, εt, at) (13b)

Aggregate equilibrium conditions: 0 = A (St−1, εt, at,Et at+1,Et Vt+1) (13c)

Bellman equations: Vt = V (at,Et at+1,Et Vt+1) (13d)

5For simplicity we always talk about one cross-sectional distribution. The general case of several types

of ex-ante different agents, with separate distributions, is subsumed in the above formulas simply by

stacking the different distributions into one vector. The same applies to the value vector.
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and the transition law of the cross-sectional distribution

Dt = Π(at,Et at+1,Et Vt+1)Dt−1 (14)

The vector of aggregate shocks εt is assumed to have bounded support (Jin and Judd 2002),

being i.i.d. over time, with current covariance matrix Σ. The expectation Et in (13) is over

the aggregate shocks only. Integration over idiosyncratic shocks is finitely approximated

and is implicit in the functions Q, A, V and Π (cf. Online-appendix B).

Notice that the optimal policies at grid points are not treated as variables of the sys-

tem, they are considered to be a function of current states, aggregate variables and the

expected value function of the next period. Optimal policies are computed in the solution

process and integrated over Dt−1 and the idiosyncratic shock ξt to obtain the aggregate

variables at (for example aggregate labor supply) and the transition matrix Π. This has

two advantages. First, it helps to keep the number of model variables as small as pos-

sible. Second, it gives the flexibility to compute the optimal policy at an endogenous

set of grid points, in particular at the values of the i.i.d. shock where the optimal policy

switches between different regimes. Differentiation of the optimal policy is described in

the online-appendix B.4.

3.2 Outline of the solution algorithm

The model solution involves the following steps:

1. Finite approximation of the continuous theoretical model, cf. Section 3.3. Given a

finite representation of the value function and the cross-sectional distribution, all

variables can be stacked into the vector Θ, and the nonlinear model (13) can be

written in compact form as

M(St−1, εt,Θt,Et Θt+1) = 0 (15)

To simplify notation, we have assumed in (15) that every expression that appears in

expectations is defined as a separate variable. For example, if the right hand side of

an Euler equation contains the term Et [(1 + rt+1)u
′(ct+1)], we have assumed that a

variable rhst = (1 + rt)u
′(ct) is defined, so that Et rhst+1 appears in the equation.

The continuation values Vt+1 appear naturally in this form.
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2. Computing the stationary state Θ̄ of the discretized model without aggregate shocks,

satisfying

M(S̄, 0, Θ̄, Θ̄) = 0 (16)

where it is understood that S̄ is the state vector in Θ̄. This step is standard.

3. Linearizing the system of model equations (15) in the set of variables (St−1, εt,Θt,Θt+1)

around the deterministic steady state (Reiter 2009a). This is done by automatic dif-

ferentiation (Griewank and Walther 2008) and is exact up to machine precision.

What needs some explanation is the differentiation of the critical points in the state

space, for example the point where an occasionally binding constraint starts binding,

or the point where an agent switches from working to non-working in the model of

indivisible labor. This is detailed in Online-appendix B.4.

4. Solving the linearized model using exact model reduction. This follows the working

paper Reiter (2010a).6 An improved version of the method is presented in Ap-

pendix A.

5. Replacing the distribution Dt−1 in St−1 by a set of statistics mt−1, to get a reduced

state vector st ≡ (mt−1, qt−1, zt−1). Replacing Dt−1 in Θt by mt we get θt. The

reduced model can be written as7

M(st−1, εt, θt,Et θt+1) = 0 (17)

To be feasible, the state vector s must be much smaller than the state in the loss-

less linear reduction of Step 4. Nevertheless, information from the linearized model

solution is useful in finding a suitable s, as is explained in Section 3.4.

6. Computing a linear solution in the reduced state vector, cf. Section 3.5.2.

7. Differentiating the reduced model (17) twice in the variables (st−1, εt, θt,Et θt+1) and

computing a second-order perturbation solution in the reduced state vector. Sec-

tion 3.5.3 presents fast iterative algorithms to compute the quadratic terms in st−1

6Auclert, Bardóczy, Rognlie, and Straub (2021) provide an alternative method that would essentially

yield to the same linearized solution. The advantage of exact model reduction is that it prepares the state

reduction necessary for the second-order perturbation.
7Using the letter M in both (15) and (17) is a slight abuse of notation.
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and εt. The terms accounting for precautionary behavior with respect to aggregate

shocks are derived in Section 3.5.4.

8. Simulating the reduced model. Section 3.6 discusses different ways to simulate the

second-order perturbation solution.

Steps 5–7 are the core contribution of this paper.

3.3 Discrete approximation of the model

In the models of Section 2, the individual state of an agent is described by a continu-

ous state variable (beginning-of-period assets) and an exogenous discrete state, capturing

productivity and age.8 The aggregate state space therefore includes the cross-sectional

distribution of assets, which is an infinite-dimensional object and must be finitely approxi-

mated. In the literature, this is often done either by a finite number of point masses (Young

2010) or by a histogram (Reiter 2009b), where it is assumed that the cross-sectional den-

sity is constant within histogram bins.9 Perturbation around the steady state is based on

the derivatives at the steady state, and one has to make sure that the transition dynamics

of the points masses or histograms are smooth enough for the required derivatives to ex-

ist, and to give a meaningful approximation to fluctuations of realistic size. Moreover, in

models with discrete choice such as the indivisible labor model, there are extensive margin

effects arising from a continuous change of the threshold point where the optimal policy is

switching between the different discrete choices. To address these issues, the idiosyncratic

i.i.d. shock ξ with smooth density function was added to the agent problems in Section 2.

This generates smooth transition probabilities between the points of a finite grid of cap-

ital, cf. Online-appendix C.2. Extensive margin effects arise from the movement of the

thresholds in ξ where the change in the discrete choice occurs, cf. Online-appendix B.4.

The discrete approximation of the decision problem of the agents can be summarized

as follows.

� The individual continuous state is approximated by a finite grid [κ̄1, . . . , κ̄nκ ].

8One can easily allow for an endogenous discrete state, such as employment status. Including additional

continuous state variables is conceptually straightforward, but increases computational complexity.
9An alternative approach is to parameterize the density of the cross-sectional distribution by a smooth

functional form (Den Haan 1997; Winberry 2018). The transition law is then nonlinear in the parameters

of the distribution, which makes it difficult to use high-dimensional approximations.
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� The individual exogenous state takes on values on the grid
[
ζ̄1, . . . , ζ̄nζ

]
.

� The cross-sectional distribution is given by the fraction of agents Di,j at each state

(κ̄i, ζ̄j).

� For each (κ̄i, ζ̄j), the optimal policy is computed on a grid of i.i.d. shocks
[
ξ̄1, . . . , ξ̄nξ

]
.

If the policy regime changes between ξ̄l and ξ̄l+1, the threshold point ξ̂ is identified,

and added to the ξ-grid at (κ̄i, ζ̄j).

� The value function at state (κ̄i, ζ̄j) is obtained by integrating the optimal value over

the distribution of the i.i.d. shock ξ. The details of the integration are given in

Online-appendix B.3.

� For each exogenous grid point ζ̄j, the value function is interpolated as a cubic spline

in the endogenous state κ.

� The cross-sectional average of any function g(κ, ζ, ξ) is obtained as∑nκ

i

∑nζ

j Di,j

∫
ξ
g(κ̄i, ζ̄j, ξ)ϕ(ξ) dξ, where ϕ(ξ) is the density function of ξ, cf. Sec-

tion B.2.

� The distribution dynamics is approximated by transition probabilities between grid

points (κ̄i, ζ̄j). Because of the smooth i.i.d. shocks, these probabilities are differen-

tiable, cf. Online-appendix C.2.

In all calculations, the optimal policy at (κ, ζ, ξ) is given implicitly by the Bellman equation

with continuation value Et Vt+1.

3.4 Model reduction for the second-order approximation

3.4.1 Linear functions of the cross-sectional distribution

Appendix A shows how to reduce the dimension of the state vector such that the linear

approximation in the reduced state is as accurate as the linear approximation in the full

state, up to machine precision. This reduced state vector still contains hundreds of vari-

ables. Denote the number of state variables by ns. In a second-order perturbation, the

solution for each model variable has 1 + ns + ns(ns + 1)/2 parameters. Since the model

contains a large number of variables, mostly from the approximation of the value function
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of the heterogeneous agents,10 a further significant reduction of the number of states is

necessary. Nevertheless, the state reduction of Appendix A is a useful starting point for

further reductions, as will be shown below.

For the quadratic approximation, I will replace the distribution Dt in the state vector

by a set of linear functions mt:

mt = HDt (18)

Any variable in the quadratic approximation is then constructed as a function of the states

(mt−1, qt−1, zt−1, εt). The matrix H should be chosen so that xmt includes at least the

variables that directly affect prices, typically the aggregate capital stock. Section 4.1 lists

the types of additional statistics that are included in the reduced state vector.

3.4.2 Proxy distributions

To approximate the distribution dynamics (14) by an equation in the statistics mt, I

use the idea of a ”proxy distribution” taken from Reiter (2010b). Again expressed as

linear deviations from the steady state, the proxy distribution Dpd
t can be written as

Dpd
t = D∗ + Φpd(mt − m∗

t ) for some known matrix Φpd. It is natural to choose Φpd such

thatDpd
t is the expectation ofDt conditional onHDt = mt in the linearized model solution,

assuming normally distributed shocks. This is given by11

Φpd = ΣDH
′(HΣDH

′)−1 (19)

We then replace (14) by

mt = HΠ(at,Et at+1,Et Vt+1) Φ
pdmt−1 (20)

so that the full model (15) is transformed into the reduced model (17). Replacing D by

m, the state vector St−1 = (Dt−1, qt−1, zt−1) is replaced by st−1 = (mt−1, qt−1, zt−1).

10For the linearized solution, Appendix A.2 derives a lossless reduction of the dimension of the value

vector. Since this reduction is not lossless for the quadratic approximation, I keep the full value vector, to

avoid additional sources of approximation error.
11ΣD is a very large matrix, but can be represented in condensed form as ΣD = UΣU ′, where U spans

the ergodic set in which the model solution lies. U is obtained from a singular value decomposition of all

the impulse responses to the different shocks of the model, and usually turns out to be of much smaller

dimension than the cross-sectional distribution.
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3.5 Perturbation solution in the reduced state

3.5.1 Notation for derivatives

To make the notation as compact as possible, we adopt the following conventions. Super-

scripts of functions or variables refer to components, subscripts denote derivatives. We use

the Einstein summation convention, where the product of two terms with a common index,

one of them as a superscript and the other one as a subscript, denotes the summation over

this index. For example, Gi
αx̃

α
t is to be understood as

∑
αG

i
αx̃

α
t . To avoid ambiguities,

it is necessary to specify the range over which the indices run. I distinguish the following

types of indices:

� Greek letters α and β run over the elements of the time-t state vector x̃t = (s̃t−1, εt).

� Greek letters γ and δ run over the elements of the predetermined states s̃t at the end

of period t.

� Greek letters λ and µ run over the future shocks εt+1.

� Roman letters i and j, run over all time-t variables in Θ̃t = [s̃t; ỹt; Ṽt]

� The uppercase Roman letters I and J run over the elements of future variables Θ̃t+1.

3.5.2 Linear Terms

Before computing the second-order approximation, it is necessary to find the first-order

terms in the reduced state space. Using the above notation, the linear perturbation in the

reduced state can be written as

Θ̃i
t = Gi

αx̃
α
t (21)

where superscript tilde denotes deviations from the deterministic steady state. The coeffi-

cients Gi
α have to be determined in the solution process. To allow for an iterative solution,

we distinguish between the time-t coefficients Gi
α and the time-(t+ 1) coefficients ĜI

α, the

hat denoting the approximation in the future period. Since Et εt+1 = 0, expected future

variables can then be written as a function of current states as

Et Θ̃
I
t+1 = ĜI

γ s̃
γ
t = ĜI

γG
γ
αx̃

α
t−1 (22)
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Therefore
∂Θ̃i

t

∂x̃α
t
= Gi

α and
∂ Et Θ̃I

t+1

∂x̃α
t

= ĜI
γG

γ
α. Total differentiation of equation k of the equa-

tion system (15) at the deterministic steady state then yields the equilibrium conditions

Mk
α +Mk

iG
i
α +Mk

I Ĝ
I
γG

γ
α = 0 (23)

where

Mk
α ≡ ∂Mk

∂xα
t

, Mk
i ≡

∂Mk

∂Θi
t

, Mk
I ≡

∂Mk

∂ΘI
t+1

(24)

In the infinite-horizon solution, G = Ĝ. Then (23) defines a quadratic equation system

in the elements of G. There are at least three potential ways to compute the stable solution:

� Standard tools for solving quadratic matrix equations such as the QZ-algorithm.

This is not feasible for very large models: even if the dimension of the state vector

is reduced, the value function is still high-dimensional, cf. Footnote 10.

� Time iteration:

1. Initialize Ĝ.

2. Given Ĝ, solve (23) for G.

3. Update Ĝ = G.

4. Iterate 2. and 3. until convergence.

This iteration converges to the stable solution if the model has a unique stable solution

(Rendahl 2017; Higham 2002). Notice that (23) is linear in the elements of G, but

the coefficients of the linear system are changing in each step of the iteration through

the updating of Ĝ, which slows down the computations. However, the changing part

is the matrix Mk
I Ĝ

I
γ, which only affects the ns state variables and has the relatively

small rank ns. The changing linear system can therefore be efficiently handled by the

Sherman-Morrison-Woodbury formula (Press, Flannery, Teukolsky, and Vetterling

1986, Section 2.7).

� Time iteration with lagged updating of the state transition Gγ
α. This is the same

iteration as above, but solving

Mk
α +Mk

iG
i
α +Mk

I Ĝ
I
γĜ

γ
α = 0 (25)
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rather than (23). In each step, the linear system has the same coefficients Mk
i and

is sparse. There is no convergence proof for this iteration, but it convergences in all

applications below and is very fast.

The interpretation of lagged updating is the following. Next period’s expected con-

tinuation values are a function of end-of-period predetermined variables, which are

determined by the aggregate state transition Gγ
α. Rather than solving for the current

state transition in equilibrium, agents apply the transition function Ĝγ
α obtained in

the previous iteration. After convergence, the two coincide.

3.5.3 Second-order terms in the state variables

For the second-order approximation, we scale the covariance matrix of the shocks Σ by the

factor σ. As usual, we proceed by deriving first the quadratic coefficients with respect to

the state variables, taken at the deterministic steady state σ = 0. Derivatives with respect

to σ are treated in Section 3.5.4.

For σ = 0, the quadratic approximation can be written as

Θ̃i
t = Gi

αx̃
α
t +

1

2
H i

αβx̃
α
t x̃

β
t (26)

so that second derivatives with respect to state variables are given by
∂2Θ̃i

t

∂x̃α
t ∂x̃

β
t

= H i
αβ. At

σ = 0 we have both Et ε
λ
t+1 = 0 and Et(ε

λ
t+1ε

µ
t+1) = 0, therefore

Et Θ̃
I
t+1 = GI

γ s̃
γ
t +

1

2
ĤI

γδs̃
γ
t s̃

δ
t

where s̃γt ≡ Gγ
αx̃

α
t +

1

2
Hγ

αβx̃
α
t x̃

β
t , s̃δt ≡ Gδ

αx̃
α
t +

1

2
Hδ

αβx̃
α
t x̃

β
t

∂2 Et Θ̃
I
t+1

∂x̃α
t−1∂x̃

β
t−1

∣∣∣∣∣
x̃t=0

= GI
γH

γ
αβ +

1

2
ĤI

γδ(G
γ
βG

δ
α +Gγ

αG
δ
β) (27)

Notice that the components of G are already known from the linear solution, therefore

there is no need to distinguish G and Ĝ. In the second order step, we solve iteratively over

H and Ĥ, with H = Ĥ after convergence. Total differentiation of the k-th equation in (15)
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with respect to the predetermined variables at the deterministic steady state gives12

Rk
αβ +Mk

iH
i
αβ +Mk

I

[
GI

γH
γ
αβ +

1

2
ĤI

γδ(G
γ
βG

δ
α +Gγ

αG
δ
β)

]
= 0 (28)

where Rk
αβ is defined as

Rk
αβ ≡ Mk

αβ +Mk
αiG

i
β +Mk

αIG
I
γG

γ
β +Mk

iβG
i
α +Mk

ijG
i
αG

j
β +Mk

iJG
i
αG

j
γG

γ
β

+Mk
IβG

I
γG

γ
α +Mk

IjG
I
γG

γ
αG

j
β +Mk

IJG
I
γG

γ
αG

J
δG

δ
β = 0

Notice thatRk
αβ does not depend on the coefficients of the quadratic approximation,H, only

on first order coefficients G which are given from the linear approximation in Section 3.5.2.

Again, there are at least three potential ways to solve the equation system (28):

� Simultaneous linear equation system

This is the way that standard software packages such as Dynare solve for the second

order coefficients. With H = Ĥ, (28) is a linear system in the elements of H:

Rk
αβ +Mk

iH
i
αβ +Mk

I

[
GI

γH
γ
αβ +

1

2
HI

γδ(G
γ
βG

δ
α +Gγ

αG
δ
β)

]
= 0

In general, this equation system is dense and has approximate dimension nv · n2
s/2,

where nv is the number of economic variables in the model, and ns is the number of

reduced state variables plus shocks. Since the storage requirement is quadratic and

the computational effort of solving a dense linear system is cubic in the dimension of

the system, this is infeasible or at least inefficient for very large models.

� Time iteration

1. Set Ĥ i
αβ = 0 for all i, α and β.

2. Given Ĥ, and separately for each pair (α, β), solve (28) for the H i
αβ. This is as

a linear system in H i
αβ. For any variable s̃γ ∈ s̃, the coefficients of the linear

system are Mk
γ +Mk

IG
I
γ. For any other variable, the coefficients are Mk

i .

12Similar to (24), we use the notation

Mk
αβ =

∂2Mk

∂xα
t ∂x

β
t

, Mk
αI =

∂2Mk

∂xα
t ∂Θ

I
t+1

, Mk
iI =

∂2Mk

∂Θi
t∂Θ

I
t+1

, etc.

for the partial derivatives of model equations.
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3. Set Ĥ i
αβ = H i

αβ for all i, α and β.

4. Iterate 2. and 3. until convergence.

Notice that the coefficients of the linear system are the same in each iteration step.

� Time iteration with lagged update of the quadratic state transition Hγ
αβ:

1. Set Ĥ i
αβ = 0 for all i, α and β.

2. Given Ĥ, and separately for each pair (α, β), solve

Rk
αβ +Mk

iH
i
αβ +Mk

I

[
GI

γĤ
γ
αβ + ĤI

αβ(G
α
βG

β
α +Gα

αG
β
β)/2

]
= 0 (29)

for H i
αβ. The linear system (29) differs from (28) only in replacing GI

γH
γ
αβ by

GI
γĤ

γ
αβ.

3. Set Ĥ i
αβ = H i

αβ for all i, α and β.

4. Iterate 2. and 3. until convergence.

With lagged updating, the linear system in each step is sparser and therefore some-

what faster to solve. Lagged updating was converging in all applications below.

3.5.4 The effect of uncertainty

It is well known (Judd 1998; Schmitt-Grohé and Uribe 2004) that the first derivative of all

policy functions with respect to σ, taken at the deterministic steady state σ = 0, is equal to

zero. The same holds for the cross-derivatives with respect to a state and σ. This means

that the effect of uncertainty on equilibrium variables in a second-order perturbation is

proportional to the variance, not the standard deviation of the shock. This effect is given

by a constant term for each variable, independent of the state of the economy. Denoting

the constant term by H i
σσ, we can write the complete quadratic approximation as

Θ̃i
t = Gi

αx̃
α
t +

1

2

(
H i

αβx̃
α
t x̃

β
t +H i

σσσ
2
)

(30)

so that
∂2Θ̃i

t

∂σ2 = H i
σσ. The expected value of future variables is given by

Et Θ̃
I
t+1 = GI

γ s̃
γ
t +

1

2
Et

(
HI

γδs̃
γ
t s̃

δ
t +HI

γλs̃
γ
t ε

λ
t+1 +HI

λµε
λ
t+1ε

µ
t+1 +HI

σσσ
2
)

= GI
γ s̃

γ
t +

1

2

(
HI

γδs̃
γ
t s̃

δ
t +HI

λµΣλµσ
2 +HI

σσσ
2
)

(31)
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where we use the abbreviation

s̃γt ≡ Gγ
αx̃

α
t−1 +

1

2

(
Hγ

αβx̃
α
t−1x̃

β
t−1 +Hγ

σσσ
2
)

(32)

This implies
∂2 Et Θ̃I

t+1

∂σ2 = GI
γH

γ
σσ +HI

λµΣλµ+HI
σσ. Differentiating the equation system (15)

twice with respect to the scaling factor σ then gives

Mk
iH

i
σσ +Mk

I

[
GI

γH
γ
σσ +HI

λµΣλµ +HI
σσ

]
= 0 (33)

With theHI
λµ given from the calculation in Section 3.5.3, Equ. (33) defines a linear equation

system in the H i
σσ that can be solved directly.

3.6 Model simulation

In the second-order perturbation solution, each variable is a quadratic function of the

reduced state vector. Next period’s reduced state is a quadratic function of the current

reduced state and of the realization of next period’s shock. Given a series of pseudo-random

shocks, simulation can proceed as it is routinely done for example in Dynare for DSGE

models. I call this aggregate simulation, and it is sufficient if only aggregate variables

are needed.

However, this procedure is not suitable to simulate the cross-sectional distribution if

the model is subject to aggregate shocks of realistic size. The main reason is that a

linear or a quadratic approximation of individual decision rules is very likely to violate

some constraints of the model. For example, saving choices will often violate borrowing

constraints. A quadratic approximation of the cross-sectional distribution will often violate

non-negativity constraints on densities.13 The threshold points of decision rules will move

between bins within the grid of i.i.d. shocks, in which case it is not clear how to perform the

integration. To simulate the full cross-sectional distribution, a more complex calculation

is required. A single step in the simulation proceeds as follows.

1. Given is the state (St−1, εt), which includes the cross-sectional distribution.

2. From (St−1, εt) obtain the reduced state (st−1, εt) by applying (18).

13A quadratic approximation of the log of densities avoids negative densities, but then densities will not

add up to unity.
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3. In the model solution, all time-t variables are a quadratic function of (st−1, εt). Use

these quadratic expressions to compute

� aggregate variables at

� end-of-period aggregate states (mt, zt, kt);

� expected values Et Vt+1 and Et at+1 from end-of-period aggregate states, apply-

ing the covariance matrix Σ of the aggregate shocks.14

4. Using Et Vt+1 and the aggregate states, solve the individual optimization problem at

all grid points and obtain the transition matrix Π as described in Online-appendix C.2.

5. Compute Dt from Equ. (14).

6. Draw a random shock εt+1; this completes the computation of the full state (St, εt+1).

I call this procedure distribution simulation. Notice that Step 4. in the simulation

does not impose the equilibrium conditions for aggregate variables such as labor market

clearing. If the aim is to maximize the precision of the model simulation, one should

iterate over Steps 3. and 4 until the equilibrium conditions are satisfied, for example by a

quasi-Newton method. In the accuracy checks in Section 4.3, I rather use the violations of

market clearing as an accuracy measure.

4 Numerical Results

The following numerical results serve to measure the accuracy of quadratic perturbation so-

lutions when models are subject to large aggregate shocks. A main focus is the comparison

between different approaches to state reduction, which are explained in Section 4.1.

Exact approximation errors of the models with aggregate uncertainty cannot be com-

puted, since an exact solution is not available. Therefore, Section 4.2 compares the de-

terministic part of the quadratic solution (cf. Section 3.5.3) to nonlinear perfect foresight

paths in response to one-time shocks of different magnitude, which can be computed with

high precision. Section 4.3 presents consistency checks of the stochastic solutions, which

also serve to estimate the accuracy of the computed precautionary effect of aggregate

uncertainty. Section 4.5 compares computing times for linear and for quadratic solutions.

14Since all variables are quadratic functions of the states, expected values only depend on the covariance

matrix, not the exact distribution of the shocks.

23



4.1 State variables

In addition to the ”minimal states” (aggregate capital, the driving processes and current

shocks), I consider the following types of statistics for the reduced state vector.

� ”MOM”: additional moments (beyond the mean) of the cross-sectional distribution

of capital, centered around the steady state of aggregate capital. These are only

applied in the infinite-horizon models.

� ”COH”: the aggregate capital owned by each cohort or by adjacent groups of cohorts,

applied in the OLG model.

� ”PCA”: the principal components of the covariance matrix of the cross-sectional

distribution, obtained from the solution of the linearized model. The idea is to

identify the linear combinations of the cross-sectional distribution that fluctuate most

over the cycle, i.e., vectors h with ∥h∥2 = 1 such that the variance of (h′D) is high.

The principal components are the eigenvectors belonging to the largest eigenvalues

of the covariance matrix ΣD of the distribution D.

� ”CEA”: the leading elements of the reduced state vector of the linearized model.

These are the leading singular vectors of the matrix that expresses the conditional

expectations of future aggregate variables as linear functions of the current distribu-

tion. I therefore call this the ”conditional expectations approach” (CEA) as explained

in Appendix A.3.

The numerical experiments compare the performance of these statistics as state variables.

4.2 Accuracy of the deterministic quadratic solution

We measure the accuracy of the deterministic part of the quadratic solution by comparing

the impulse response function to a one-time shock with the nonlinear perfect foresight path

after this shock. The impulse response function is computed by the aggregate simulation

approach (cf. Section 3.6). The perfect foresight path can be solved for with high preci-

sion.15 Considering shocks of different size, we get an idea of the range of the state space

for which a quadratic perturbation is a good approximation. As a benchmark, we also

15Auclert, Bardóczy, Rognlie, and Straub (2021) show an efficient way to compute the Jacobian of a

perfect-foresight path at the steady state solution, which can be used to solve for nonlinear paths by a
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consider the approximation error of the linearized solution with loss-less model reduction

(cf. Appendix A).

The most important results for the three models are collected in Table 4.2. The table

reports the maximum absolute deviation of the perturbation solution from the exact im-

pulse response. We consider three aggregate variables: aggregate labor input, the change

in aggregate capital (”investment”), and the level of the capital stock. The error in the

capital stock is an indication of how approximation errors accumulate over time in the

simulation. All numbers are expressed relative to the respective steady state value (for the

change in capital, relative to the steady state level of capital).

Results are given for different model reduction types (column ”Reduc”) and different

number of states (”#St”). We vary the size of the shock between one standard deviation

(Z0 = 1) and ten standard deviations (Z0 = 10). For each shock size, the column ”Neg”

refers to a negative (i.e., contractionary) shock of this size, the column ”NegPos” refers

to the sum of the impulse responses to a negative shock and a positive shock of the same

size. By summing over the responses to the negative and the positive shock, we eliminate

the linear part in the solution and the approximation error, focusing on the quadratic and

higher-order parts. The numbers in parentheses in the first line of every model report the

maximum absolute impulse response, to which the maximum absolute approximation errors

can be compared. By construction, the linear approximation (”LIN”) explains nothing of

the sum of positive and negative responses, the error in the column ”NegPos” is therefore

always equal to the maximum impulse response.

The first part of the table refers to the impulse responses to a one-time shock of minus

one standard deviation in the divisible-labor model. As one can expect for such a small

shock, the linear approximation already does a good job, with a maximal error of only

half a percent of the impulse response. This is considerably better than the quadratic

approximation ”- 0”, which only uses the minimal states (capital, lagged TFP and current

shock), in this respect similar to the approach in Krusell and Smith (1998). With this

shock size, the aggregation error is more severe than the linearization error. This is true

for all three variables under a contractionary shock (column ”Neg”). To improve on the

linear solution, additional state variables have to be included in the quadratic solution.

It turns out that two additional variables are sufficient. As additional states we either

quasi-Newton method. For the results below I compute the path by fixed point iteration with Anderson

acceleration, which converges in a few steps.
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Table 2: Accuracy of perturbation solutions: maximum absolute errors of impulse responses

Labor Investment Capital

Model Z0 Reduc #St Neg NegPos Neg NegPos Neg NegPos

DivL 1 (ImpResp) (3.7e-3) (1.7e-5) (5.8e-4) (5.9e-7) (4.9e-3) (6.9e-6)

LIN 1.69e-5 1.67e-5 5.85e-7 5.88e-7 6.88e-6 6.86e-6

- 0 1.28e-4 2.60e-6 4.93e-6 1.58e-7 2.66e-5 2.30e-6

MOM 2 7.88e-6 2.96e-6 2.19e-7 1.46e-7 3.73e-6 2.76e-6

PCA 2 6.47e-6 2.61e-6 4.66e-7 1.47e-7 6.13e-6 2.35e-6

CEA 2 2.34e-6 1.74e-6 2.11e-7 1.50e-7 2.85e-6 2.58e-6

10 (ImpResp) (3.9e-2) (1.6e-3) (5.8e-3) (4.7e-5) (4.8e-2) (6.2e-4)

LIN 1.68e-3 1.62e-3 4.71e-5 4.67e-5 6.19e-4 6.15e-4

- 0 1.46e-3 1.35e-4 5.04e-5 6.20e-6 2.81e-4 1.42e-4

MOM 2 1.44e-4 1.43e-4 4.42e-6 4.75e-6 7.49e-5 7.00e-5

PCA 2 9.73e-5 9.55e-5 7.58e-6 3.28e-6 9.72e-5 9.78e-5

CEA 2 8.52e-5 1.49e-5 1.75e-6 5.55e-7 9.76e-6 1.41e-5

IndL 10 (ImpResp) (3.6e-2) (2.1e-3) (7.0e-3) (5.1e-5) (5.4e-2) (6.4e-4)

LIN 2.20e-3 2.13e-3 5.05e-5 5.14e-5 6.30e-4 6.39e-4

- 0 1.01e-3 2.66e-4 3.70e-5 7.06e-6 1.17e-4 6.21e-5

MOM 2 3.75e-4 3.60e-4 1.92e-5 1.64e-5 1.37e-4 1.50e-4

PCA 2 5.47e-4 3.70e-4 1.75e-5 1.16e-5 1.55e-4 1.12e-4

CEA 2 2.39e-4 6.39e-5 9.84e-6 7.14e-6 4.56e-5 4.57e-5

OLG 3 (ImpResp) (1.3e-2) (5.6e-3) (1.3e-2) (2.9e-4) (2.1e-2) (1.5e-3)

LIN 5.64e-3 5.57e-3 2.91e-4 2.89e-4 1.45e-3 1.45e-3

- 0 8.03e-4 3.26e-4 9.31e-5 1.44e-5 8.61e-4 1.01e-4

COH 5 4.80e-4 3.60e-4 2.23e-5 1.09e-5 1.14e-4 1.49e-4

PCA 4 4.21e-4 3.80e-4 6.37e-5 5.39e-5 1.41e-3 1.21e-3

CEA 6 2.07e-4 1.41e-4 1.54e-5 1.13e-5 2.00e-5 1.46e-5

10 (1.4e-2) (6.5e-2) (4.6e-2) (3.2e-3) (7.7e-2) (1.6e-2)

LIN 6.55e-2 6.49e-2 3.25e-3 3.24e-3 1.61e-2 1.63e-2

CEA 6 5.15e-3 4.51e-3 1.43e-4 2.24e-4 4.08e-4 3.16e-4

Notes: Z0: initial shock size; ”Reduc”: type of state reduction, cf. Section 4.1. #St:

number additional states;
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choose two additional cross-sectional moments (variance and skewness, ”MOM”), the two

most important principal components (”PCA”) or the first two terms of the conditional

expectations approach(”CEA”). The latter achieves the lowest error for all three variables.

Including more than two additional states brings no further improvement and can even lead

to a deterioration. Detailed results for approximations with up to 10 additional variables

are provided in the online-appendix E, Table 7.

It is instructive to study how the approximation changes when the size of the shock is

multiplied by 10, shown in the next part of Table 4.2. This shock causes a recession with

a drop in output and labor of about 9 and 4 percent, respectively. The error of the linear

approximation increases quadratically, as one would expect from a linear approximation.

This is reassuring: the linear perturbation solution has the expected properties, in spite of

the discrete approximations underlying the approximation, even for very large shocks. In

contrast, the error of the quadratic solution with minimal states increases linearly, because

it is dominated by the aggregation error, which increases linearly in the deviation from the

steady state. Adding more states, the role of the aggregation error is much reduced and the

nonlinearity becomes more important. As a consequence, the error increases super-linearly

in the shock size. With this large shock, the best quadratic solution achieves an increase

in accuracy between one and two orders of magnitude over the linear solution.

As one would expect, the sum of impulse responses (”NegPos”) increases about quadrat-

ically in the shock size. Again, the CEA approach performs better than the other state

reduction methods, and the approximation error is only about 1 percent of the response.

All in all, these results show that the quadratic perturbation provides high accuracy even

for very large shocks in this model.

The indivisible-labor model, featuring a discontinuity in the individual labor and

consumption function, is more difficult to solve accurately.16 Table 4.2 again shows results

for a shock of ten standard deviations. Accuracy of quadratic solutions deteriorates com-

pared to the divisible-labor model by a factor of about four. Nevertheless, the quadratic

solution improves on the linear solution by about one order of magnitude. What is most

important, it shows that modeling the aggregate labor supply response by differentiating

16Takahashi (2014) found severe approximation errors in the original numerical results; extensive results

in the online-appendix D show that our solution does not suffer from these problems, being close to the

results of Takahashi.
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the threshold points between working and non-working is successful. 17 Again, CEA turns

out to be a reliable choice, doing well in all cases.

The OLG model poses additional challenges. The model is not calibrated to data,

but is designed so as to be a stronger test case for state aggregation, by having additional

heterogeneity through the OLG structure, and featuring three shocks with different prop-

erties. For that purpose, I choose standard deviations of 0.005 for the TFP shock, 0.01

for the shock to the slope of productivity with respect to age, and 0.005 for the shock to

the depreciation factor. In the linearized model, these values yield a standard deviation of

undetrended output of 4.77 percent and of 1.64 percent after detrending. About one third

of this variation comes from the shock to depreciation, and about 20 percent come from

the shock to the productivity slope.

The results in Table 4.2 refer to the case where all shocks occur simultaneously with

either three or 10 times their standard deviation. The minimal state vector now includes

7 variables, namely aggregate capital as well as the lagged values of the three exogenous

states and the three shocks. For the additional states we again compare the CEA and PCA

approach, but also consider results for solutions that use the aggregate capital holdings of

adjacent cohort as additional state variables (”COH”). The line ”COH” with 11 additional

states has the capital holdings of each of the cohorts 1 to 11 next to the aggregate capital

stock. The line ”COH” with 5 additional states adds the capital holdings of cohorts 1–2,

3–4, 5–6, 7–8 and 9–10. The line ”COH” with 3 additional states adds the capital holdings

of cohorts 1–3, 4–6, 7–9.

With shocks of three standard deviations, high accuracy can be achieved, improving

over the linearized solution by more than one order of magnitude. For the sum of negative

and positive responses, the error is somewhat more than 1 percent of the responses. Again,

it turns out the CEA performs better than the alternatives. The upper panels in Figure 1

illustrate results for a large variety of state vectors, ranging up to 20 additional states

for both PCA and CEA.18 The graphs show very clearly that conditioning on more state

variables does not necessarily increase accuracy.

The last part of the table, showing results for a simultaneous shock to all three processes

of 10 standard deviations, points to the limits of the perturbation approach. Notice that the

approximation in the linear approximation is greater than the impulse response itself. The

17The technicalities of the differentiation are described in the online-appendix B.4.
18More extensive results for all three models are collected in the online-appendix E.
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Figure 1: OLG Model, results for different state vectors
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quadratic approximations improve greatly on the linear one, but the approximation error

in labor is about 30 percent of the impulse response, so the approximation is not reliable.

Increasing the number of states does not help, cf. the results in the online-appendix E.

Shocks of this size probably require a global nonlinear solution strategy.

4.3 Accuracy of the precautionary term

In a second-order perturbation, the deterministic and the stochastic solution for any model

variable only differ by a constant term that is proportional to the variance of the shocks.

Table 3 presents these constants for aggregate labor and consumption for the three example

models. As a benchmark, results are also given for a standard RBC model, using the same

parameter values as the divisible-labor model.

Table 3: Precautionary effect

RBC Divisible Labor Indiv. Labor OLG

Labor 0.0117 0.0078 0.0068 0.0430

Consumption -0.0109 -0.0086 -0.0080 -0.0333

Notes: in percent of steady state value.

We see that the differences between RBC and the infinite-horizon HA models are not

large. Interestingly, the precautionary effect of aggregate shocks on aggregate consumption

and labor is smaller in the divisible-labor than in the RBC model. This also depends on the

wealth distribution: a more detailed analysis reveals that asset-rich households show very

small precautionary behavior. In the OLG model, which is driven by different aggregate

shocks, the precautionary effect is substantially larger.

The precautionary effect is related to the quadratic coefficients through formula (33),

so that approximation errors in the quadratic terms will feed through to the precautionary

term. I see no direct way to measure the approximation error in the precautionary effect

unless a more precise solution is available. As a partial consistency check, one would

require the precautionary term to be stable across quadratic solutions with different state

vectors, at least for all those that achieve high accuracy. This turns out to be satisfied for

the two infinite-horizon models. For the 19 different state vectors tried with the divisible-

labor model, the precautionary effects on consumption and labor of all but 3 solutions lie
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within plus or minus 10 percent of the median value. In the indivisible-labor model, it is

in all but 4 solutions. This is not the case in the OLG model. The graphs at the bottom

of Figure 1 show the precautionary effect in the OLG model for a large variety of state

vectors. The estimated precautionary effect differs widely across the solutions based on the

PCA approach. The positive result is that the estimated effect is almost constant for the

CEA solutions with 6 or more additional states. These are also the solutions that achieve

consistently high accuracy for the quadratic terms (cf. again the top panels in the figure).

The reason why the precautionary term is more difficult to estimate in the OLG model is

that it features three shocks. Two of them (TFP shock and shock on the productivity slope)

generate a precautionary effect of the usual sign, negative on consumption and positive on

labor. The variability of the third shock (to depreciation) has the opposite effect: positive

on consumption and negative on labor.19 The same problem can be expected to arise in

DSGE models with several shocks.

As a further check, we also test accuracy of the stochastic solutions in a way similar

to the common practice of computing Euler residuals at many points in the state space.

More precisely, the residuals are computed as follows:

1. Simulate a long time series of all model variables by the distribution simulations,

cf. Section 3.6. In each step, this includes the computation of the expected continu-

ation value function.

2. From the continuation value function, compute optimal individual decisions, then

integrate individual decisions to obtain aggregate consumption, labor, etc. Residuals

are then defined as the difference between the aggregate values computed in this way

and the values implied by the quadratic approximation.

The maximum of the residuals along the simulation paths are shown in the middle panels

of Figure 1. Results are in line with the performance of the deterministic model. The

CEA approach performs best, and optimal performance is approximately reached with 8

additional state variables. A further increase in the number of state variables has little

effect.

19This may appear surprising, but it is also true in a simple RBC model with the same specification of

the depreciation shock.
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4.4 Summary of the accuracy results

Quadratic approximations are successful in providing solutions with high accuracy. For

all the models considered here, they improve over the linear approximation by at least

one order of magnitude for shocks of realistic size. To achieve this improvement, it is

necessary to condition the solution on more than the ”minimal states” (aggregate capital

and the driving shocks), but adding 2–6 states turns out to be sufficient in our example

models. For a given number of states, the most accurate results are usually achieved by the

CEA approach, which includes those statistics of the cross-sectional distribution that are

identified as being most useful for of prediction of future variables in the linearized solution.

These variables turn out to be more relevant for the solution than the components of the

distribution that account for most of the cyclical variation in the distribution, which is

what PCA does.

It is important to note that an increase in the number of state variables may also lead

to a reduction in accuracy. This happened in the infinite-horizon models when adding

cross-sectional moments of capital beyond the third moment, or when adding the capital

stock of each cohort in the OLG model. A likely explanation is the following.20 Additional

state variables are useful if they provide relevant information about the cross-sectional

distribution. This information is conveyed through the ”proxy distribution”, which exploits

the covariance of the state variables and the distribution in the linearized solution. If the

correlation between some variables is substantially changed in the nonlinear solution, the

information provided may become misleading.

4.5 Computational cost

The algorithm was coded in the programming language Julia. The divisible- and indivisible

labor model can be easily done even on a small laptop, but the implementation of the OLG

model needs somewhat more memory. For comparability across models, all computations

were done on a Windows desktop with an AMD Ryzen 7-3700X 8-core CPU at 3.6 Ghz

with 16GB memory. The computation times needed for the quadratic approximations are

shown in Table 4.

20This problem is not due to collinearity issues, because the state variables are diagonalized to avoid

collinearity.
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Table 4: Computation times in seconds

Divisible Labor Indivisible Labor OLG

Solution #states seconds #states seconds #states seconds

SteadyState 1401 1.6 8501 17.7 16803 25.0

Linear 1401 3.0 8501 35.8 16803 57.2

Quadratic 5 2.7 5 29.5 7 85.6

Quadratic 10 4.7 10 47.2 10 113.3

Quadratic 15 6.9 15 70.0 15 141.5

Quadratic 20 10.3 20 102.3 20 188.5

Notes: Computation times exclude compilation time; timings are approximate and stochas-

tic because of automatic garbage collection. The quadratic approximations use the CEA

approach.

The table distinguishes three steps of the computation. First, solving for the steady

state without aggregate shocks. Second, computing the linear solution, which involves

the differentiation of the equation system, the computation of the loss-less model reduc-

tion of Appendix A and the model solution by QZ-decomposition. Third, computing the

quadratic perturbation, which includes finding the proxy distribution, twice differentiat-

ing the reduced model, and performing the backward iterations detailed in Section 3.5.

One should keep in mind that computing times depend on the exact implementation of

the algorithms, and the time for any component may come down if further algorithmic

improvements are found. Of course, lowering the grid sizes for capital and productivity

would speed up computation, with a probably minor loss in accuracy.

The exact computing time depends on the dimension of the state vector, but for mod-

erate dimension the costs are similar in magnitude to the cost of the linearized solution,

including the steady state computation. All in all, computation time only increases about

linearly in the dimension of the reduced state vector, if sufficient memory is available.

5 Conclusions

In this paper I have shown how to extend the linearization approach of Reiter (2009a) to

a second-order perturbation. Applied to three different heterogeneous agent models, the
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method achieves high accuracy, improving by an order of magnitude or more compared

to linearization if the model is subject to large aggregate shocks. An iterative algorithm

obtains the solution with computation times similar to the time required for steady state

and first order approximation. The ”conditional-expectations approach”, building on Re-

iter (2010a), was proposed as a general approach to achieve a substantial reduction in the

number of state variables with little loss in accuracy. In all the example models, this ap-

proach achieved higher accuracy than alternatives. The second-order approximation allows

to compute the precautionary effect of aggregate uncertainty on behavior. In the example

models featuring a TFP shock only, the precautionary effect is small, comparable to the

effect in a standard RBC model. In the OLG model with several aggregate shocks, the

precautionary effect is stronger.

A second-order perturbation solution in a reduced state space enables very fast simu-

lation of the model and appears to be a promising method for simulation based estimation

procedures. It could also be used as a starting point to obtain even more accurate approx-

imations. One idea is to combine the first- and second-order terms with different state

vectors, using linear approximation in a high dimensional state and quadratic approxima-

tion in a lower-dimensional state. This would keep both the aggregation error and the

error from nonlinearity small. A second option is a hybrid approach, coupling quadratic

perturbation with more general nonlinear transformations, as proposed by Judd (2002)

and Fernandez-Villaverde and Rubio-Ramirez (2006). Exploring these options is left for

future work.

A Loss-less Model Reduction for the Linear Solution

A.1 Model reduction: general outline

The vector Θ is of high dimension as it contains the cross-sectional distribution of wealth

as well as the value function of households. The aim of this section is show how to reduce

the dimension of the model with (almost) no loss in accuracy in the linearized version of

the model. The engineering literature (Antoulas 2005) shows how to do model reduction

if the model is already given in state space form. This theory cannot be applied directly,

because the economic model first has to be solved before the state-space form is obtained.

We partition the linearized model, splitting the variables into three types: St denotes
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the vector of state variables, and Vt denotes the vector of all variables that appear with time

index t+ 1,21 and yt contains all other variables. All variables are expressed in deviations

from deterministic steady state. While St and Vt can be very large vectors, it is essential

that the dimension of yt is small.

Partitioning the equation system of the general model in Section 3.1 in conformity to

the variables, the linearization around the steady state can be written as
Λss 0 0

Λys 0 0

0 0 0



St−1

yt−1

Vt−1

+


Γss Γsy Γsv

Γys Γyy Γyv

0 Γvy Γvv



St

yt

Vt

+

Et


0 0 Φsv

0 0 Φyv

0 0 Φvv



St+1

yt+1

Vt+1

+


Ψs

Ψy

0

 εt = 0 (34)

Only the variables V appear with time index t+ 1, only S appears with time index t− 1,

and these two groups do not overlap. Only y, not S enters the equations for V . This can

be easily achieved by adding auxiliary variables to y. We assume that Γss, Γyy, and Γvv are

invertible. We further assume that Γss and Γvv are sparse (often diagonal), so that Γ−1
ss Λss

etc. can be easily computed.

Using the regularity of Γss and Γvv, we can rewrite (34) as
Γ−1
ss Λss

Λys

0

St−1 +


I Γ−1

ss Γsy Γ−1
ss Γsv

Γys Γyy Γyv

0 Γ−1
vv Γvy I



St

yt

Vt

+

Et


Γ−1
ss Φsv

Φyv

Γ−1
vv Φvv

Vt+1 +


Γ−1
ss Ψs

Ψy

0

 εt = 0 (35)

The task is to replace the large vectors S and V by vectors of lower dimension. This is

possible without loss in accuracy if the following two conditions are satisfied.

1. There exists an nV × nv matrix V̄ with nv < nV ≡ dim(V ) such that each possible

value Vt in a solution of the model can be written as

Vt = V̄ vt (36)

21This is a slight deviation from the notation of Section 3.2, where Vt includes only the value vector.
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The basis V̄ spans a lower-dimensional space in which the value function lives.

W.l.o.g. we can choose V̄ as orthonormal so that V̄ ′V̄ = I, and therefore vt = V̄ ′Vt.

Section A.2 shows how to find such a V̄ if it exists.

2. There exists an ns × nS matrix S̄ with ns < nS ≡ dim(S) and matrices Â, Λ̃ys and

Γ̃ys such that

S̄Γ−1
ss Λss = ÂS̄, (37a)

Λys = Λ̃ysS̄, Γys = Γ̃ysS̄ (37b)

(37b) is satisfied if the rows of Λys and Γys are spanned by the rows of S̄. We then

define

st = S̄St (38)

The vector st should be interpreted as the statistics of the cross-sectional distribution

that are necessary to compute the solution. These statistics are linear functions of

the distribution. Section A.3 shows how to find such an S̄ if it exists.

To write the model in reduced form, we premultiply the first block of equations in (35) by

S̄, and the third block by V̄ ′. Using (36)–(38), the equation system (35) becomes
Â

Λ̃ys

0

 st−1 +


I S̄Γ−1

ss Γsy S̄Γ−1
ss ΓsvV̄

Γ̃ys Γyy ΓyvV̄

0 V̄ ′Γ−1
vv Γvy I



st

yt

vt

+

Et


S̄Γ−1

ss ΦsvV̄

ΦyvV̄

V̄ ′Γ−1
vv ΦvvV̄

 vt+1 +


S̄Γ−1

ss Ψs

Ψy

0

 εt = 0 (39)

It turns out that in all our example models substantial value and state reduction is possible

such that (36) and (37) are satisfied with machine precision. In all our examples, the

dimension of the reduced model (39) is small enough that the model can be solved for

(st, yt, vt) by standard methods such as Sims (2001). The degree of model reduction is

reported in Section A.5.

Notice the asymmetry between state reduction and value function reduction. For the

value function, we require that V̄ spans the space in which the value function ”lives”

in equilibrium. In contrast, we do not assume to know the space in which St lives. In
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particular, S̄ ′ does not span the space of realizations of St. What is required for state

reduction is a set of statistics st that provides sufficient information about the state to

solve the model. This is ensured by the commutation property (37). The realizations of

St in a simulation also depend on the (arbitrary) initial state. Section A.4 shows how to

recover St from st in a simulation.

A.2 Loss-less value function reduction

To find a lower-dimensional basis V̄ of the value function space,22 write the third line of

equations in (35) as

Vt = Et

(
Γ̃vyyt + Φ̃vvVt+1

)
(40)

where Γ̃vy = −Γ−1
vv Γvy and Φ̃vv = −Γ−1

vv Φvv. Iterating forward gives

Vt = Et

[
Γ̃vyyt + Φ̃vvΓ̃vyyt+1 + Φ̃2

vvΓ̃vyyt+2 + . . .
]

=
∞∑
i=0

Φ̃i
vvΓ̃vy Et yt+i (41)

At this stage, the terms Et yt+i are unknown, but (41) implies that Vt is spanned by the

columns of the matrix Q ≡
[
Γ̃vy, Φ̃vvΓ̃vy, Φ̃

2
vvΓ̃vy, . . . , Φ̃

N
vvΓ̃vy,

]
where N is chosen such

that Q has full rank, and further terms do not increase the space. The matrix V̄ is then

given by an orthonormal basis of Q. This transformation is only useful if the rank of Q is

substantially smaller than the dimension of V . An essential condition for this is that Γ̃vy

has low rank, which is the case if the number of aggregate variables y affecting the decision

problem of agents directly is small.

A.3 Loss-less state aggregation

As stated at the end of Section A.1, the task is to find a selection matrix S̄ such that (37)

is satisfied. We start with the following

Lemma 1. Given an n × n matrix A and an m × n matrix C with m ≤ n, define the

22Reiter (2010a) proposes an iterative algorithm to determine V̄ , for which there is no convergence proof.

The procedure described here avoids this problem and is faster.
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(m · n)× n matrix Q (in system theory called ”observability matrix”) as

Q ≡



C

CA

CA2

· · ·
CAn−1


(42)

Denote by k ≤ n the rank of Q. Then there are a k × n matrix K and a k × k matrix Â

such that

i) KK ′ = Ik

ii) KA = ÂK

iii) The rows of C are spanned by the rows of K.

Proof. The singular value decomposition of Q can be written as

Q =
[
U1 U2

] [S 0

0 0

][
V ′
1

V ′
2

]
= U1SV

′
1 (43)

S ≡ diag(σ1, . . . , σk) (44)

where U1 has dimension m · n× k, V1 hs dimension n× k, and U ′
1U1 = V ′

1V1 = Ik. Setting

K = V ′
1 , then i) follows immediately from the properties of V1, and ii) follows from 1) by

setting Â ≡ KAK ′. To get iii), notice that

C =
[
I 0 . . . 0

]
Q =

([
I 0 . . . 0

]
U1S

)
K (45)

To satisfy (37), we apply Lemma 1 setting A as Γ−1
ss Λss and C as an arbitrary basis of[

Λ′
ys Γ′

ys

]′
. S̄ is then chosen as K of Lemma 1. State reduction is achieved if the rank of

Q is smaller than the dimension of Λss, Again, this requires that that the vector y is small

so that Λys and Γys have small rank.

This construction of S̄ has an intuitive interpretation. Assume that we want to predict

the endogenous variables yt+i for i = 0, 1, . . . in a linear model where y is related to the

states S by yt = CSt and the state transition equation is

St = ASt−1 +Bεt, Et−1 εt = 0 (46)
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Then

Et yt+i = CAiSt (47)

and the matrixQ in (42) expresses conditional expectations of future y’s as a linear function

of current states. A basis for Q then gives the linear combination of the states that contains

all the relevant information about the expected y’s. This procedures is therefore called the

”Conditional Expectations Approach” in Reiter (2010a).

Notice that we do not know the system dynamics A before solving the model, so that

the matrix S̄ in (37) does not appear to capture the conditional expectations of the model

solution. However, it follows from the commutation property (37a) that it is sufficient to

use the Γ−1
ss Λss instead of A for model reduction, so that S̄ does in fact contain the relevant

information about the model solution.

A.4 Simulating the linearized model

Simulating the reduced model (39) we obtain time series for the reduced variables (st, yt, vt).

The full value vector Vt is then given by (36) as Vt = V̄ vt. However, the full state vector

St is not a function of (st, yt, vt), but is path-dependent and can be recovered only as part

of a simulation of the model. To start the simulation, an initial state vector S0 must be

given, for example the deterministic steady state. The full state vector St is computed in

step t of the simulation as follows:

1. From st and yt, the model solution determines Et vt+1, which gives Et Vt+1 = V̄ Et vt+1.

2. St is obtained from the first block of equations in (35) as

St = −Γ−1
ss

[
ΛssSt−1 + Γsyyt + ΓsvV̄ vt + ΦsvV̄ Et vt+1 +Ψsεt

]
A.5 Model reduction in the example models

Table 5 reports the degree of reduction that is achieved by the loss-less reduction when

applied to the models of Section 2.
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Table 5: State reduction

Model nD nm nV nv

Divisible Labor 1400 188 350 97

Indivisible Labor 8500 316 1700 136

OLG model 16800 244 3360 183

Here, nD = nκ ·nζ denotes the size of the discrete grid of individual states, nm the number

of statistics describing the distribution. In the largest model, the number of variables is

reduced from about 20,000 to about 400. Even further reductions would be possible, with

minimal changes in results, by applying a less strict criterion for the rank of the Q-matrix

in Sections A.2 and A.3. Models with a few hundred variables can be easily solved by

QZ-decomposition. For more examples, cf. Reiter (2010a).
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Schmitt-Grohé, S. and M. Uribe (2004). Solving dynamic general equilibrium models

using a second-order approximation to the policy function. Journal of Economic

Dynamics and Control 28, 755–75.

Sims, C. A. (2001). Solving linear rational expectations models. Computational Eco-

nomics 20 (1-2), 1–20.

Takahashi, S. (2014, April). Heterogeneity and Aggregation: Implications for Labor-

Market Fluctuations: Comment. American Economic Review 104 (4), 1446–60.

Winberry, T. (2018). A toolbox for solving and estimating heterogeneous agent macro

models. Quantitative Economics, forthcoming.

42



Young, E. R. (2010). Solving the incomplete markets model with aggregate uncertainty

using the Krusell-Smith algorithm and non-stochastic simulations. Journal of Eco-

nomic Dynamics and Control 34 (1), 36–41.

43



Online-Appendix

”State Reduction and Second-order Perturbations of
Heterogeneous Agent Models”

Michael Reiter, IHS and NYU Abu Dhabi

B The distribution of the i.i.d. Shocks

B.1 Motivation

Part of the methodology outlined in Section 3 is to assume that all agents receive a shock

in each period that is i.i.d. across time and agents. The main methodological purpose of

the i.i.d. shocks is to smooth the value function as well as the transition function of the

cross-sectional distribution. The shock should have a sufficiently smooth density function,

denoted by ϕ, but should also have bounded support [ξ, ξ̄], in order to preserve the sparsity

of the state transition equations.

To motivate our construction of the shock in Section B.2, consider that the value func-

tion is interpolated by a cubic spline in the continuous state x, which is twice differentiable

everywhere, it is desirable that the theoretical value function is twice differentiable in x.

Now consider any function g(x, ξ, y), where x can be a continuous idiosyncratic variable

or an aggregate variable, and y is a function of (x, ξ). We assume that g is smooth in its

3 arguments, but y may be non-differentiable, or even discontinuous, for a finite number

of ξ-values. Define I(x) ≡
∫ ξ̄

ξ
g(x, ξ, y(x, ξ))ϕ(ξ) dξ. Assume that, for a given x, y(x, ξ) is

given in the open interval (ξ, ξ∗(x)) by an three times differentiable function yl and in the

open interval (ξ∗(x), ξ̄) by the three times differentiable function yr.

I(x) =
∫ ξ∗(x)

ξ

g(x, ξ, yl(x, ξ))ϕ(ξ) dξ +

∫ ξ̄

ξ∗(x)

g(x, ξ, yr(x, ξ))ϕ(ξ) dξ (48)
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Formally differentiating with respect to x gives

I ′(x) =

∫ ξ∗(x)

ξ

gx(x, ξ, y
l(x, ξ)) + gy(x, ξ, y

l(x, ξ))ylx(x, ξ)ϕ(ξ) dξ

+

∫ ξ̄

ξ∗(x)

gx(x, ξ, y
r(x, ξ)) + gy(x, ξ, y

r(x, ξ))yrx(x, ξ)ϕ(ξ) dξ

+
d ξ∗(x)

d x

[
g(x, ξ∗, yl(x, ξ∗))− g(x, ξ∗, yr(x, ξ∗))

]
ϕ(ξ∗) (49)

Differentiating again with respect to x gives

I ′′(x) = . . .+

(
d ξ∗(x)

d x

)2

ϕ′(ξ∗)
[
gl(x, ξ∗, y(x, ξ∗))− gr(x, ξ∗, y(x, ξ∗))

]
(50)

If g(x, ξ∗, yl(x, ξ∗)) ̸= g(x, ξ∗, yr(x, ξ∗)), (50) shows that the second derivative of I(x) rests
on the differentiability of ϕ. Similarly, one can show that the third derivative of I(x) rests
on the second derivative of ϕ. The next section will construct a specific twice differentiable

density ϕ.

B.2 The density function

The following constructs a shock distribution with the following properties:

1. symmetric around zero

2. finite support (−ξ̄, ξ̄)

3. piece-wise polynomial density function that is twice differentiable everywhere

4. normalized to unit variance.

The density function ϕ is constructed by two forth-degree polynomials, sliced together at

ξ = 0. There are 11 free parameters, namely two times 5 parameters of the polynomial,

and ξ̄. They are determined by 11 conditions:

� the value, first and second derivative are all zero at ξ = −ξ̄ and at ξ = ξ̄

� the value, first and second derivative are equal fore the two polynomials at ξ = 0

� the density integrates to one:
∫ ξ̄

−ξ̄
ϕ(ξ) dξ = 1

2



� the shock has unit variance
∫ ξ̄

−ξ̄
ξ2ϕ(ξ) dξ = 1

The expected value of zero arises from the symmetry of the construction and need not be

imposed. By symmetry, the distribution has zero skewness. It has a kurtosis of 2.625, lower

than the skewness of 3 of the normal distribution. This is a consequence of the bounded

support.

B.3 Approximating expected values

To compute the expected value
∫
g(ξ)ϕ(ξ) dξ of any function g(ξ), I interpolate g(ξ) piece-

wise linearly on a grid of knot points −ξ̄ = ξ̄1 < ξ̄2, . . . , ξ̄n−1 < ξ̄nξ
= ξ̄. Piecewise

linear interpolation, unlike higher-order interpolation, guarantees that the expected value

is monotonically increasing in the function values f(ξ̄i). The expected value of the inter-

polated function can be written as
∑nξ

i=1 ωif(ξ̄i), where the weights ωi are positive and

independent of f .

For a second-order perturbation, second derivatives of all quantities in the model are

needed. Let us now assume that the function f depends on parameters α and β, which

might be aggregate variables in the model. For notational brevity, we suppress α and β as

arguments of g(ξ). It is natural to approximate

∂
∫
g(ξ)ϕ(ξ) dξ

∂α
≈

nξ∑
i=1

ωi
∂g(ξ̄i)

∂α
,

∂2
∫
g(ξ)ϕ(ξ) dξ

∂α∂β
≈

nξ∑
i=1

ωi
∂2g(ξ̄i)

∂α∂β
(51)

This gives a valid approximation if g(ξ) is such that
∂
∫
g(ξ)ϕ(ξ) dξ

∂α
=
∫ ∂g(ξ)

∂α
ϕ(ξ) dξ and

∂2
∫
g(ξ)ϕ(ξ) dξ

∂α∂β
=
∫ ∂2g(ξ)

∂α∂β
ϕ(ξ) dξ which requires that ∂g(ξ)

∂α
and ∂2g(ξ)

∂α∂β
are continuous in ξ.

If the value, first derivative or second derivative of f is discontinuous at a threshold

point ξ = ξ̂, we can write the integral as∫
g(ξ)ϕ(ξ) dξ =

∫ ξ̂

−ξ̄

g1(ξ)ϕ(ξ) dξ +

∫ ξ̄

ξ̂

g2(ξ)ϕ(ξ) dξ (52)

where the second derivatives of both g1(ξ) and g2(ξ) are continuous. Taking into account

that the threshold point ξ̂ can itself depend on parameters, the derivatives are given by

∂
∫
g(ξ)ϕ(ξ) dξ

∂α
=

∫ ξ̂

−ξ̄

∂g1(ξ)

∂α
ϕ(ξ) dξ +

∫ ξ̄

ξ̂

∂g2(ξ)

∂α
ϕ(ξ) dξ +

∂x

∂α
(g1(ξ̂)− g2(ξ̂)) (53)
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and

∂2
∫
g(ξ)ϕ(ξ) dξ

∂α∂β
=

∫ ξ̂

−ξ̄

∂2g1(ξ)

∂α∂β
ϕ(ξ) dξ +

∫ ξ̄

ξ̂

∂2g2(ξ)

∂α∂β
ϕ(ξ) dξ +

∂x

∂α

∂x

∂β
· (g′1(ξ̂)− g′2(ξ̂))

+
∂x

∂β
·

(
∂g1(ξ̂)

∂α
− ∂g2(ξ̂)

∂α

)
+

∂x

∂α
·

(
∂g1(ξ̂)

∂β
− ∂g2(ξ̂)

∂β

)
+

∂2x

∂α∂β
· (g1(ξ̂)− g2(ξ̂)) (54)

A valid perturbation approach therefore requires to compute the threshold point as well as

its first and second derivatives. The integrals
∫ ξ̂

−ξ̄
∂2g1(ξ)
∂α∂β

ϕ(ξ) dξ etc. will again be evaluated

by piecewise linear interpolation of g1(ξ). For this purpose, the threshold point ξ̂ is inserted

into the grid ξ̄1, . . . , ξ̄nξ
.

B.4 Differentiating threshold points

In a perturbation solution, the reaction of individual policies to aggregate shocks comes

from two sources. First, the derivatives of the continuous policy function with respect

to the aggregate states, obtained either from differentiating the first order conditions (case

of interior optimum) or from differentiating the boundary conditions (in case of binding

constraints). Second, the derivatives of critical points (called ”threshold points” in the

following), where behavior changes from one regime to another one. For example, the

labor supply in the indivisible-labor model is exclusively driven by the movements of the

threshold point from working to non-working.

Individual policy functions depend on the state vector (aggregate and idiosyncratic),

computed on a finite grid of states, and on the individual i.i.d. shock ξ, which is treated

as a continuous variable. At any point on the grid of individual states, a threshold point

is a point ξ = ξ̂ where the solution regime changes. A perturbation solution requires to

compute the response of switch points to changes in the aggregate variables. I consider

four different types of threshold points:

1. Hitting a boundary constraint of the endogenous state (for example a non-negativity

constraint on the end-of-period state).

2. Hitting a boundary constraint of another endogenous variable (such as the non-

negativity constraint on hours worked).

3. Changing the discrete choice, such as working versus not working in the model of

indivisible labor.
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4. A discontinuity of the continuous choice variables, arising when the global maximum

switches from one local maximum to another one, which can happen when the opti-

mization problem of agents is non-convex. In our example model, I did not encounter

such a situation.

Each threshold point features three continuous variables: the location of the threshold ξ̂,

the left limit yleft of the continuous choice variable and the right limit yright of the contin-

uous choice variable at ξ̂. To compute the first and second derivative of these quantities

with respect to aggregate variables, one can apply the implicit function theorem on the

system of three equations that determine the three variables. These equations are the

following, where I use the notation FOC(x, ξ̂, y, d) for the first order condition that an

interior solution y satisfies under discrete choice d, and g(x, ξ̂, y, d) denotes an occasionally

binding constraint.

1. Hitting a boundary constraint, either of the endogenous state or of another endoge-

nous variable (type 1. and type 2. above). At such a point, the policy function y is

continuous, so that y = yright = yleft, and we are left with two conditions:

� the constraint is binding at the threshold:

g(x, ξ̂, y(x, ξ̂), d(x, ξ̂)) = 0

� the first order condition holds with equality at the threshold:

FOC(x, ξ̂, y(x, ξ̂), d(x, ξ̂)) = 0

2. Change in a discrete choice variable d from d = d1 to d = d2 (type 3. above).

� left limit of continuous choice is the optimum under d1:

FOC(x, ξ̂, yleft, d1) = 0

� right limit of continuous choice is the optimum under d2:

FOC(x, ξ̂, yright, d2) = 0

� maximum achievable under d1 equals maximum achievable under d2:

v(x, ξ̂, yleft, d1) = v(x, ξ̂, yright, d2)

3. A discontinuity of the continuous choice variables appears at ξ̂, although the discrete

choice d(x, ξ̂) does not change (type 3. above).
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� left limit of continuous choice is a local optimum under d:

FOC(x, ξ̂, yleft, d(x, ξ̂)) = 0

� right limit of continuous choice is a local optimum under d:

FOC(x, ξ̂, yright, d(x, ξ̂)) = 0

� yleft and yright achieve the same value: v(x, ξ̂, yleft, d) = v(x, ξ̂, yright, d)

As a practical matter, the identification of threshold points in the computation of the

steady state is only done in the last steps of the iteration. In earlier stages, the integral

of the value function over the distribution of the i.i.d. shock is computed by the standard

quadrature rule, ignoring the kink at threshold points. This has only a very small impact

on the overall value function, and it is sufficient to rectify this once the value function is

close to convergence. In this way one also avoids anomalies, such as a household for which

both the non-negativity of labor supply and the borrowing constraint are binding. In a

normally calibrated model, this should not happen, because only rich people choose not

to work, and only poor people are bound by the borrowing constraint. However, this can

happen in the first period of the value function iteration, where every household saves the

minimum amount.

C Finite Approximation of the Value and Distribu-

tion Functions

C.1 Value function approximation

The optimal policy depends through the Euler equation on the first derivative of the value

function. The second derivative of the policy function then depends on the third derivative

of the value function w.r.t. the individual continuous state, here household wealth. I

approximate the value function by a cubic spline in household wealth. The third derivative

of a cubic spline is discontinuous at the knot points, but is still right on average over any

interval, if the second derivative is right at both ends of the interval. The discontinuity

should therefore not have a significant effect on aggregates.
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C.2 Distribution dynamics

The capital-dimension of the cross-sectional distribution is represented by the fraction of

agents at the given set of grid points κi for i = 1, . . . , nk. Denote the end-of-period state

by the ”saving function” K ′(κi, ξ; Ω) where Ω stands for all aggregate and individual states

except k. Then we set the transition probabilities between grid points i and j as

Πi,j(x) = prob[K ′(κi, ξ; Ω) ∈ (κ̄j−1, κ̄j)] (55)

where the boundaries κ̄j are chosen as κ̄0 = k, κ̄nk
= ∞ and κ̄j = (κj + κj+1)/2 for

j = 1, . . . , nk − 1. Assuming that K ′(k, ξ; Ω) increases monotonically in ξ, this can be

written as

Πi,j(x) = cdf(Ξ(κ̄j, κi; Ω))− cdf(Ξ(κj, κi; Ω)) (56)

where the function Ξ is defined as

Ξ(k, κi; Ω) ≡


ξ if k ≤ K ′(κi, ξ; Ω)

ξ̄ if k ≥ K ′(κi, ξ̄; Ω)

ξ s.t. K ′(κi, ξ; Ω) = k else

(57)

If K ′(k, ξ; Ω) decreases monotonically in ξ, the formulas are reversed in the obvious way.

Non-monotonic behavior would be more difficult to handle, first requiring to identify the

maxima and minima of K ′.

D Indivisible-Labor Model: Comparison to Existing

Solutions

The model of indivisible labor in Chang and Kim (2007) is much harder to solve accurately

than the model of divisible labor. Takahashi (2014) showed severe approximation errors

in the original numerical results; improving the numerical approximation turns out to lead

to substantially different results. The results presented below use the same calibration as

Chang and Kim (2007), including the Markov process of productivity. The only substantial

difference is the introduction of the smooth i.i.d. shock on labor productivity, ξ. Table 6

follows Tables 1 and 2 in Takahashi (2014), adding results of the linearized model solution

with different levels of the standard deviation of ξ, σξ = 0.01, 0.03, 0.05 as well as the

quadratic model solution with σξ = 0.05.
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Table 6: Results Chang/Kim model

Data Chang/Kim Takahashi Lin,0.01 Lin,0.03 Lin,0.05 Quad,0.05

σH 0.82 0.76 0.57 0.54 0.53 0.52 0.52

σwedge 0.92 0.76 0.24 0.19 0.17 0.16 0.16

σY 2.06 1.28 1.30 1.20 1.19 1.18 1.18

σC 0.45 0.39 0.33 0.33 0.33 0.33 0.33

σI 2.41 3.06 3.08 3.09 3.08 3.07 3.15

σL - 0.50 0.41 0.39 0.37 0.37 0.37

σY/H 0.50 0.50 0.49 0.50 0.51 0.51 0.51

ρ(H,wedge) 0.85 0.87 0.95 0.97 0.98 0.98 0.98

ρ(H,Y/H) 0.08 0.23 0.80 0.85 0.88 0.88 0.88

ρ(H,wedge) 0.85 0.87 0.95 0.97 0.98 0.98 0.98

ρ(Y,C) 0.69 0.84 0.89 0.90 0.90 0.90 0.90

ρ(Y, I) 0.90 0.98 0.99 0.99 0.99 0.99 0.97

ρ(Y,H) 0.86 0.87 0.96 0.97 0.97 0.97 0.97

ρ(Y, L) — 0.92 0.95 0.97 0.97 0.98 0.98

ρ(Y, Y/H) 0.57 0.68 0.94 0.96 0.97 0.97 0.97

The table shows that the linearized and the quadratic solutions, in particular when σξ

is small, are very close to the Takahashi solution and clearly distinct from the Chang-Kim

results. On the one hand, this is not surprising, because these solution methods do not

suffer from the numerical problems pointed out by Takahashi. On the other hand, it is

remarkable that perturbation approaches give results that are so close to Takahashi, who

uses a version of the Krusell-Smith method.

E Details of Accuracy Checks

The following tables and graphs present the detailed results underlying the discussion in

Section 4. For explanations, see Sections 4.1 – 4.3.
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Table 7: Divisible-labor model, maximum error in impulse response to shock of 1 standard

deviation

Labor Investment Capital

Reduc #St. Neg NegPos Neg NegPos Neg NegPos

(ImpResp) (3.7e-3) (1.7e-5) (5.8e-4) (5.9e-7) (4.9e-3) (6.9e-6)

LIN 1400 1.69e-5 1.67e-5 5.85e-7 5.88e-7 6.88e-6 6.86e-6

- 0 1.28e-4 2.60e-6 4.93e-6 1.58e-7 2.66e-5 2.30e-6

CEA 1 9.20e-5 1.52e-6 2.75e-6 1.59e-7 1.80e-5 2.43e-6

CEA 2 2.34e-6 1.74e-6 2.11e-7 1.50e-7 2.85e-6 2.58e-6

CEA 3 1.57e-6 1.67e-6 1.78e-7 1.51e-7 2.74e-6 2.64e-6

CEA 4 1.75e-6 1.63e-6 1.56e-7 1.51e-7 2.64e-6 2.61e-6

CEA 6 1.75e-6 1.71e-6 1.56e-7 1.51e-7 2.74e-6 2.69e-6

CEA 8 1.70e-6 1.70e-6 1.56e-7 1.51e-7 2.75e-6 2.69e-6

CEA 10 1.70e-6 1.68e-6 1.56e-7 1.51e-7 2.78e-6 2.72e-6

MOM 1 1.12e-4 1.84e-6 3.45e-6 1.47e-7 2.26e-5 2.69e-6

MOM 2 7.88e-6 2.96e-6 2.19e-7 1.46e-7 3.73e-6 2.76e-6

MOM 3 8.83e-5 3.51e-5 2.56e-6 1.06e-6 2.79e-5 2.04e-5

MOM 4 1.15e-4 6.39e-5 4.41e-6 2.24e-6 2.52e-5 3.00e-5

PCA 1 4.61e-5 8.27e-7 1.27e-6 1.74e-7 1.19e-5 2.40e-6

PCA 2 6.47e-6 2.61e-6 4.66e-7 1.47e-7 6.13e-6 2.35e-6

PCA 3 6.15e-6 2.65e-6 3.93e-7 1.71e-7 3.84e-6 2.18e-6

PCA 4 6.68e-6 3.26e-6 3.65e-7 1.75e-7 3.71e-6 2.54e-6

PCA 6 4.57e-6 3.42e-6 2.48e-7 1.85e-7 3.20e-6 3.24e-6

PCA 8 3.82e-6 3.42e-6 2.22e-7 1.87e-7 3.50e-6 3.43e-6

PCA 10 3.57e-6 3.40e-6 2.44e-7 1.77e-7 3.07e-6 3.13e-6

Notes: Neg: response to negative shock; NegPos: sum of responses to negative and positive

shock; #St: number of states added ot the minimal state vector; all solutions quadratic

except ”LIN”; row ”(ImpResp)”: maximum absolute impulse response;

cf. Section 4.2 for more explanations.
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Table 8: Divisible-labor model, maximum error in impulse response to shock of 10 standard

deviations

Labor Investment Capital

Reduc #St. Neg NegPos Neg NegPos Neg NegPos

(ImpResp) (3.9e-2) (1.6e-3) (5.8e-3) (4.7e-5) (4.8e-2) (6.2e-4)

LIN 1400 1.68e-3 1.62e-3 4.71e-5 4.67e-5 6.19e-4 6.15e-4

- 0 1.46e-3 1.35e-4 5.04e-5 6.20e-6 2.81e-4 1.42e-4

CEA 1 1.07e-3 1.05e-4 2.80e-5 3.14e-6 1.47e-4 3.67e-5

CEA 2 8.52e-5 1.49e-5 1.75e-6 5.55e-7 9.76e-6 1.41e-5

CEA 3 6.99e-5 1.44e-5 1.67e-6 5.09e-7 6.88e-6 1.27e-5

CEA 4 7.01e-5 7.15e-6 1.65e-6 3.58e-7 5.65e-6 9.22e-6

CEA 6 6.98e-5 1.08e-5 1.67e-6 6.12e-7 1.01e-5 4.40e-6

CEA 8 6.97e-5 7.46e-6 1.69e-6 3.32e-7 1.56e-5 5.58e-6

CEA 10 6.98e-5 4.40e-6 1.67e-6 2.09e-7 1.10e-5 3.00e-6

MOM 1 1.28e-3 1.11e-4 3.44e-5 2.36e-6 2.20e-4 1.59e-5

MOM 2 1.44e-4 1.43e-4 4.42e-6 4.75e-6 7.49e-5 7.00e-5

MOM 3 2.77e-3 3.67e-3 8.91e-5 1.12e-4 1.42e-3 2.18e-3

MOM 4 1.03e-2 6.83e-3 3.73e-4 2.41e-4 4.98e-3 3.33e-3

PCA 1 4.92e-4 1.74e-4 1.37e-5 5.15e-6 6.57e-5 6.81e-5

PCA 2 9.73e-5 9.55e-5 7.58e-6 3.28e-6 9.72e-5 9.78e-5

PCA 3 1.12e-4 1.03e-4 8.01e-6 8.64e-6 2.22e-4 1.87e-4

PCA 4 1.82e-4 1.70e-4 1.27e-5 1.19e-5 2.60e-4 2.26e-4

PCA 6 2.35e-4 2.08e-4 1.44e-5 1.31e-5 3.19e-4 2.98e-4

PCA 8 2.36e-4 2.07e-4 1.43e-5 1.32e-5 3.57e-4 3.36e-4

PCA 10 2.24e-4 1.93e-4 1.20e-5 1.13e-5 3.30e-4 3.10e-4

Notes: Neg: response to negative shock; NegPos: sum of responses to negative and positive

shock; #St: number of states added ot the minimal state vector; all solutions quadratic

except ”LIN”; row ”(ImpResp)”: maximum absolute impulse response;

cf. Section 4.2 for more explanations.
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Table 9: Indivisible-labor model, maximum error in impulse response to shock of 1 standard

deviation1

Labor Investment Capital

Reduc #St. Neg NegPos Neg NegPos Neg NegPos

(ImpResp) (3.4e-3) (2.0e-5) (7.0e-4) (5.2e-7) (5.5e-3) (6.5e-6)

LIN 8500 2.01e-5 1.96e-5 4.08e-7 5.23e-7 4.57e-6 6.47e-6

- 0 6.72e-5 4.46e-6 3.43e-6 9.93e-8 1.34e-5 7.30e-7

CEA 1 6.44e-5 6.82e-6 3.33e-6 1.43e-7 1.08e-5 2.64e-6

CEA 2 7.99e-6 4.63e-6 8.83e-7 6.28e-8 2.19e-6 7.79e-7

CEA 3 2.85e-6 5.00e-6 4.92e-7 6.80e-8 1.92e-6 8.29e-7

CEA 4 2.39e-6 5.12e-6 2.33e-7 8.33e-8 1.37e-6 1.03e-6

CEA 6 2.45e-6 5.00e-6 2.47e-7 7.88e-8 1.57e-6 8.57e-7

CEA 8 1.21e-6 4.10e-6 2.24e-7 7.56e-8 1.64e-6 7.48e-7

CEA 10 1.03e-6 4.06e-6 2.35e-7 7.49e-8 1.72e-6 7.87e-7

MOM 1 1.17e-5 3.26e-6 1.04e-6 7.94e-8 3.57e-6 1.12e-6

MOM 2 1.05e-5 7.82e-6 7.56e-7 1.55e-7 3.86e-6 1.57e-6

MOM 3 1.45e-5 8.68e-6 7.45e-7 1.83e-7 2.76e-6 1.69e-6

MOM 4 9.40e-6 1.26e-5 7.82e-7 3.23e-7 5.56e-6 4.52e-6

PCA 1 1.46e-5 4.61e-6 5.41e-7 7.92e-8 6.97e-6 6.80e-7

PCA 2 9.29e-6 3.83e-6 4.96e-7 1.08e-7 4.22e-6 1.01e-6

PCA 3 5.88e-6 3.48e-6 4.06e-7 1.05e-7 3.59e-6 1.11e-6

PCA 4 3.84e-6 2.37e-6 3.57e-7 1.52e-7 4.00e-6 2.00e-6

PCA 6 3.47e-6 3.01e-6 3.62e-7 1.06e-7 3.43e-6 1.08e-6

PCA 8 1.02e-5 1.03e-5 3.78e-7 3.69e-7 9.95e-6 1.07e-5

PCA 10 1.27e-5 1.32e-5 4.16e-7 3.96e-7 1.13e-5 1.15e-5

Notes: Neg: response to negative shock; NegPos: sum of responses to negative and positive

shock; #St: number of states added ot the minimal state vector; all solutions quadratic

except ”LIN”; row ”(ImpResp)”: maximum absolute impulse response;

cf. Section 4.2 for more explanations.
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Table 10: Indivisible-labor model, maximum error in impulse response to shock of 10

standard deviations

Labor Investment Capital

Reduc #St. Neg NegPos Neg NegPos Neg NegPos

(ImpResp) (3.6e-2) (2.1e-3) (7.0e-3) (5.1e-5) (5.4e-2) (6.4e-4)

LIN 8500 2.20e-3 2.13e-3 5.05e-5 5.15e-5 6.31e-4 6.39e-4

- 0 1.01e-3 2.66e-4 3.70e-5 7.06e-6 1.17e-4 6.21e-5

CEA 1 9.44e-4 2.70e-4 3.12e-5 9.86e-6 2.93e-4 2.84e-4

CEA 2 2.39e-4 6.39e-5 9.84e-6 7.14e-6 4.56e-5 4.57e-5

CEA 3 1.93e-4 8.42e-5 1.04e-5 7.66e-6 5.45e-5 5.34e-5

CEA 4 1.61e-4 9.20e-5 9.85e-6 7.12e-6 8.12e-5 9.94e-5

CEA 6 1.79e-4 9.54e-5 8.64e-6 5.91e-6 5.29e-5 8.25e-5

CEA 8 1.61e-4 5.19e-5 8.21e-6 5.48e-6 2.74e-5 3.55e-5

CEA 10 1.71e-4 5.75e-5 7.85e-6 5.12e-6 1.58e-5 3.21e-5

MOM 1 3.08e-4 2.36e-4 9.90e-6 7.89e-6 1.25e-4 9.88e-5

MOM 2 3.75e-4 3.60e-4 1.92e-5 1.64e-5 1.37e-4 1.50e-4

MOM 3 6.09e-4 7.44e-4 2.20e-5 1.92e-5 1.57e-4 2.19e-4

MOM 4 7.50e-4 8.14e-4 3.59e-5 3.32e-5 3.79e-4 3.94e-4

PCA 1 4.32e-4 2.04e-4 1.14e-5 6.16e-6 7.01e-5 7.55e-5

PCA 2 5.47e-4 3.70e-4 1.75e-5 1.16e-5 1.55e-4 1.12e-4

PCA 3 4.80e-4 3.57e-4 1.58e-5 1.15e-5 1.64e-4 1.22e-4

PCA 4 5.99e-4 4.70e-4 2.13e-5 1.61e-5 2.51e-4 1.98e-4

PCA 6 5.06e-4 3.76e-4 1.64e-5 1.05e-5 1.79e-4 1.20e-4

PCA 8 7.17e-4 6.97e-4 3.42e-5 3.48e-5 1.06e-3 1.10e-3

PCA 10 9.37e-4 9.45e-4 3.72e-5 3.92e-5 1.14e-3 1.17e-3

Notes: Neg: response to negative shock; NegPos: sum of responses to negative and positive

shock; #St: number of states added ot the minimal state vector; all solutions quadratic

except ”LIN”; row ”(ImpResp)”: maximum absolute impulse response;

cf. Section 4.2 for more explanations.
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Table 11: OLG model, maximum error in impulse response to simultaneous shocks of 3

standard deviations

Labor Investment Capital

Reduc #St. Neg NegPos Neg NegPos Neg NegPos

(ImpResp) (1.3e-2) (5.6e-3) (1.3e-2) (2.9e-4) (2.1e-2) (1.5e-3)

LIN 16800 5.64e-3 5.57e-3 2.91e-4 2.89e-4 1.45e-3 1.45e-3

- 0 8.03e-4 3.26e-4 9.31e-5 1.44e-5 8.61e-4 1.01e-4

CEA 1 4.88e-4 1.36e-4 3.20e-5 1.09e-5 2.74e-4 6.25e-5

CEA 2 5.68e-4 1.30e-4 3.09e-5 1.03e-5 2.50e-4 6.45e-5

CEA 3 2.29e-4 1.41e-4 1.55e-5 1.14e-5 8.83e-5 5.79e-5

CEA 4 2.31e-4 1.40e-4 1.53e-5 1.13e-5 6.52e-5 3.48e-5

CEA 6 2.07e-4 1.41e-4 1.54e-5 1.13e-5 2.00e-5 1.46e-5

CEA 8 2.08e-4 1.41e-4 1.55e-5 1.14e-5 1.55e-5 1.14e-5

CEA 10 2.08e-4 1.41e-4 1.55e-5 1.14e-5 2.71e-5 1.14e-5

CEA 15 2.08e-4 1.41e-4 1.55e-5 1.14e-5 3.07e-5 1.15e-5

CEA 20 2.08e-4 1.42e-4 1.55e-5 1.14e-5 2.92e-5 1.14e-5

COH 3 5.26e-4 1.25e-4 2.56e-5 9.86e-6 3.20e-4 9.75e-5

COH 5 4.80e-4 3.60e-4 2.23e-5 1.09e-5 1.14e-4 1.49e-4

COH 11 3.50e-3 3.68e-3 1.82e-4 1.91e-4 1.42e-3 1.81e-3

PCA 1 5.41e-4 3.50e-4 1.02e-4 9.22e-6 6.42e-4 3.65e-5

PCA 2 7.23e-4 5.32e-4 5.77e-5 4.40e-5 1.25e-3 9.37e-4

PCA 3 7.41e-4 3.73e-4 7.03e-5 5.74e-5 1.44e-3 1.21e-3

PCA 4 4.21e-4 3.80e-4 6.37e-5 5.39e-5 1.41e-3 1.21e-3

PCA 6 1.03e-3 1.06e-3 6.64e-5 6.96e-5 1.22e-3 1.14e-3

PCA 8 1.23e-3 1.17e-3 6.22e-5 7.09e-5 1.20e-3 1.13e-3

PCA 10 1.03e-3 1.09e-3 5.42e-5 6.33e-5 1.17e-3 1.08e-3

PCA 15 1.11e-3 1.17e-3 4.76e-5 4.98e-5 6.63e-4 6.96e-4

PCA 20 1.67e-3 1.68e-3 7.04e-5 7.15e-5 7.18e-4 7.33e-4

Notes: Neg: response to negative shock; NegPos: sum of responses to negative and positive

shock; #St: number of states added ot the minimal state vector; all solutions quadratic

except ”LIN”; row ”(ImpResp)”: maximum absolute impulse response;

cf. Section 4.2 for more explanations.
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Table 12: OLG model, maximum error in impulse response to simultaneous shocks of 10

standard deviations

Labor Investment Capital

Reduc #St. Neg NegPos Neg NegPos Neg NegPos

(ImpResp) (1.4e-2) (6.5e-2) (4.6e-2) (3.2e-3) (7.7e-2) (1.6e-2)

LIN 16800 6.55e-2 6.49e-2 3.25e-3 3.24e-3 1.61e-2 1.63e-2

- 0 5.72e-3 4.87e-3 2.84e-4 2.58e-4 3.02e-3 1.01e-3

CEA 1 5.13e-3 4.45e-3 1.79e-4 2.19e-4 7.66e-4 5.68e-4

CEA 2 5.04e-3 4.38e-3 1.72e-4 2.13e-4 7.31e-4 5.87e-4

CEA 3 5.16e-3 4.51e-3 1.44e-4 2.25e-4 9.53e-4 7.18e-4

CEA 4 5.14e-3 4.50e-3 1.43e-4 2.23e-4 2.90e-4 5.03e-4

CEA 6 5.15e-3 4.51e-3 1.43e-4 2.24e-4 4.08e-4 3.16e-4

CEA 8 5.16e-3 4.52e-3 1.44e-4 2.25e-4 2.06e-4 2.36e-4

CEA 10 5.16e-3 4.51e-3 1.45e-4 2.25e-4 1.45e-3 2.41e-4

CEA 15 5.16e-3 4.52e-3 1.47e-4 2.25e-4 1.54e-3 2.52e-4

CEA 20 5.16e-3 4.52e-3 1.44e-4 2.25e-4 1.34e-3 2.59e-4

COH 3 4.96e-3 4.33e-3 1.26e-4 2.08e-4 1.60e-3 1.15e-3

COH 5 4.60e-3 3.96e-3 1.39e-4 1.73e-4 1.39e-3 1.52e-3

COH 11 3.48e-2 4.21e-2 1.84e-3 2.19e-3 9.66e-3 2.32e-2

PCA 1 4.97e-3 4.25e-3 3.54e-4 2.01e-4 2.09e-3 5.22e-4

PCA 2 3.70e-3 6.38e-3 7.58e-4 5.40e-4 1.54e-2 1.22e-2

PCA 3 2.58e-3 3.33e-3 8.28e-4 7.24e-4 1.89e-2 1.59e-2

PCA 4 3.70e-3 2.42e-3 7.19e-4 6.81e-4 1.74e-2 1.54e-2

PCA 6 1.04e-2 1.19e-2 6.53e-4 7.84e-4 1.41e-2 1.50e-2

PCA 8 1.07e-2 1.27e-2 5.47e-4 7.61e-4 1.36e-2 1.48e-2

PCA 10 1.08e-2 1.31e-2 5.27e-4 7.42e-4 1.27e-2 1.37e-2

PCA 15 1.01e-2 1.21e-2 4.66e-4 5.93e-4 7.72e-3 8.89e-3

PCA 20 1.44e-2 1.41e-2 6.70e-4 6.87e-4 7.39e-3 9.06e-3

Notes: Neg: response to negative shock; NegPos: sum of responses to negative and positive

shock; #St: number of states added ot the minimal state vector; all solutions quadratic

except ”LIN”; row ”(ImpResp)”: maximum absolute impulse response;

cf. Section 4.2 for more explanations.
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Figure 2: Divisible-labor model, max. error to impulse response, 1 stdev
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Figure 3: Divisible-labor model, max. error to impulse response, 10 stdev
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Figure 4: Indivisible-labor model, max. error to impulse response, 1 stdev
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Figure 5: Indivisible-labor model, max. error to impulse response, 10 stdev
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Figure 6: OLG model, max. error to impulse response all shocks, 3 stdev
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Figure 7: OLG model, max. error to impulse response all shocks, 10 stdev
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Table 13: OLG model, precautionary effects and Euler residual errors in simulation

Precautionary effects RMSE

Reduc #St Labor Cons. Capital Labor Cons. Capital

- 0 1.32e-4 -2.43e-4 6.27e-4 5.32e-4 4.69e-3 4.83e-3

CEA 1 1.93e-4 -4.53e-4 1.01e-3 4.92e-4 6.88e-4 1.78e-3

CEA 2 1.98e-4 -4.71e-4 1.04e-3 5.11e-4 3.16e-4 1.78e-3

CEA 3 1.66e-4 -3.62e-4 8.43e-4 2.25e-4 2.09e-4 8.85e-4

CEA 4 1.71e-4 -3.82e-4 8.78e-4 1.95e-4 1.82e-4 8.31e-4

CEA 6 1.71e-4 -3.82e-4 8.78e-4 1.43e-4 1.88e-4 7.65e-4

CEA 8 1.71e-4 -3.80e-4 8.75e-4 8.92e-5 1.52e-4 7.19e-4

CEA 10 1.71e-4 -3.81e-4 8.77e-4 2.15e-4 1.47e-4 9.96e-4

CEA 15 1.71e-4 -3.80e-4 8.75e-4 3.73e-4 1.11e-4 1.39e-3

CEA 20 1.71e-4 -3.80e-4 8.75e-4 4.51e-4 1.09e-4 1.59e-3

COH 3 1.83e-4 -4.21e-4 9.52e-4 4.29e-4 4.72e-4 1.68e-3

COH 5 2.39e-4 -6.15e-4 1.31e-3 7.98e-4 6.98e-4 2.13e-3

COH 11 4.37e-4 -1.27e-3 2.53e-3 3.02e-3 2.49e-3 8.08e-3

PCA 1 2.17e-4 -5.38e-4 1.17e-3 5.47e-4 2.61e-3 2.99e-3

PCA 2 8.09e-4 -2.63e-3 4.97e-3 5.37e-4 2.38e-3 2.47e-3

PCA 3 7.44e-4 -2.41e-3 4.56e-3 4.82e-4 2.29e-3 3.18e-3

PCA 4 6.83e-4 -2.20e-3 4.18e-3 5.00e-4 2.25e-3 3.24e-3

PCA 6 5.02e-4 -1.58e-3 3.03e-3 8.40e-4 2.03e-3 4.17e-3

PCA 8 4.76e-4 -1.49e-3 2.87e-3 8.56e-4 2.11e-3 4.23e-3

PCA 10 4.54e-4 -1.41e-3 2.73e-3 9.03e-4 2.10e-3 3.94e-3

PCA 15 2.53e-4 -6.93e-4 1.43e-3 7.66e-4 1.38e-3 3.44e-3

PCA 20 9.73e-5 -1.41e-4 4.23e-4 8.78e-4 8.74e-4 3.36e-3

Notes: #St: number of states added ot the minimal state vector; cf. Section 4.3 for detailed

explanations.
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